
IBM Parallel Environment for AIX 5L

MPI Subroutine Reference

Version 4 Release 3.0

SA22-7946-05

���

IBM Parallel Environment for AIX 5L

MPI Subroutine Reference

Version 4 Release 3.0

SA22-7946-05

���

Note

Before using this information and the product it supports, read the information in “Notices” on page 597.

Sixth Edition (October 2006)

This edition applies to version 4, release 3, modification 0 of IBM Parallel Environment for AIX 5L (product number

5765-F83) and to all subsequent releases and modifications until otherwise indicated in new editions. This edition

replaces SA22-7946-04. Significant changes or additions to the text and illustrations are indicated by a vertical line (|

) to the left of the change.

IBM welcomes your comments. A form for your comments appears at the back of this publication. If the form has

been removed, address your comments to:

 IBM Corporation, Department 55JA, Mail Station P384

 2455 South Road

 Poughkeepsie, NY 12601-5400

 United States of America

 FAX (United States and Canada): 1+845+432-9405

 FAX (Other Countries) Your International Access Code +1+845+432-9405

 IBMLink (United States customers only): IBMUSM10(MHVRCFS)

 Internet: mhvrcfs@us.ibm.com

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:

v Title and order number of this book

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Tables . xi

About this book . xiii

Who should read this book . xiii

Conventions and terminology used in this book xiii

Abbreviated names . xiv

Prerequisite and related information xv

Using LookAt to look up message explanations xv

How to send your comments . xvi

National language support (NLS) xvi

Summary of changes for Parallel Environment 4.3 xvi

Chapter 1. A sample MPI subroutine 1

A_SAMPLE_MPI_SUBROUTINE, A_Sample_MPI_subroutine 2

Chapter 2. Nonblocking collective communication subroutines 5

MPE_IALLGATHER, MPE_Iallgather 6

MPE_IALLGATHERV, MPE_Iallgatherv 9

MPE_IALLREDUCE, MPE_Iallreduce 12

MPE_IALLTOALL, MPE_Ialltoall 15

MPE_IALLTOALLV, MPE_Ialltoallv 18

MPE_IBARRIER, MPE_Ibarrier 21

MPE_IBCAST, MPE_Ibcast . 23

MPE_IGATHER, MPE_Igather 26

MPE_IGATHERV, MPE_Igatherv 29

MPE_IREDUCE, MPE_Ireduce 32

MPE_IREDUCE_SCATTER, MPE_Ireduce_scatter 35

MPE_ISCAN, MPE_Iscan . 38

MPE_ISCATTER, MPE_Iscatter 41

MPE_ISCATTERV, MPE_Iscatterv 44

Chapter 3. MPI subroutines and functions 47

MPI_ABORT, MPI_Abort . 48

MPI_ACCUMULATE, MPI_Accumulate 49

MPI_ADD_ERROR_CLASS, MPI_Add_error_class 52

MPI_ADD_ERROR_CODE, MPI_Add_error_code 54

MPI_ADD_ERROR_STRING, MPI_Add_error_string 56

MPI_ADDRESS, MPI_Address 58

MPI_ALLGATHER, MPI_Allgather 59

MPI_ALLGATHERV, MPI_Allgatherv 61

MPI_ALLOC_MEM, MPI_Alloc_mem 63

MPI_ALLREDUCE, MPI_Allreduce 65

MPI_ALLTOALL, MPI_Alltoall 68

MPI_ALLTOALLV, MPI_Alltoallv 70

MPI_ALLTOALLW, MPI_Alltoallw 72

MPI_ATTR_DELETE, MPI_Attr_delete 75

MPI_ATTR_GET, MPI_Attr_get 76

MPI_ATTR_PUT, MPI_Attr_put 78

MPI_BARRIER, MPI_Barrier . 80

MPI_BCAST, MPI_Bcast . 82

MPI_BSEND, MPI_Bsend . 84

MPI_BSEND_INIT, MPI_Bsend_init 86

MPI_BUFFER_ATTACH, MPI_Buffer_attach 88

© Copyright IBM Corp. 1993, 2006 iii

||
||
||
||
||
||
||
||
||

MPI_BUFFER_DETACH, MPI_Buffer_detach 90

MPI_CANCEL, MPI_Cancel . 92

MPI_CART_COORDS, MPI_Cart_coords 94

MPI_CART_CREATE, MPI_Cart_create 96

MPI_CART_GET, MPI_Cart_get 98

MPI_CART_MAP, MPI_Cart_map 100

MPI_CART_RANK, MPI_Cart_rank 102

MPI_CART_SHIFT, MPI_Cart_shift 104

MPI_CART_SUB, MPI_Cart_sub 106

MPI_CARTDIM_GET, MPI_Cartdim_get 108

MPI_Comm_c2f . 109

MPI_COMM_CALL_ERRHANDLER, MPI_Comm_call_errhandler 110

MPI::Comm::Clone . 112

MPI_COMM_COMPARE, MPI_Comm_compare 113

MPI_COMM_CREATE, MPI_Comm_create 115

MPI_COMM_CREATE_ERRHANDLER, MPI_Comm_create_errhandler . . . 117

MPI_COMM_CREATE_KEYVAL, MPI_Comm_create_keyval 119

MPI_COMM_DELETE_ATTR, MPI_Comm_delete_attr 121

MPI_COMM_DUP, MPI_Comm_dup 122

MPI_Comm_f2c . 124

MPI_COMM_FREE, MPI_Comm_free 125

MPI_COMM_FREE_KEYVAL, MPI_Comm_free_keyval 126

MPI_COMM_GET_ATTR, MPI_Comm_get_attr 127

MPI_COMM_GET_ERRHANDLER, MPI_Comm_get_errhandler 129

MPI_COMM_GET_NAME, MPI_Comm_get_name 130

MPI_COMM_GROUP, MPI_Comm_group 132

MPI_COMM_RANK, MPI_Comm_rank 133

MPI_COMM_REMOTE_GROUP, MPI_Comm_remote_group 134

MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size 135

MPI_COMM_SET_ATTR, MPI_Comm_set_attr 136

MPI_COMM_SET_ERRHANDLER, MPI_Comm_set_errhandler 138

MPI_COMM_SET_NAME, MPI_Comm_set_name 139

MPI_COMM_SIZE, MPI_Comm_size 141

MPI_COMM_SPLIT, MPI_Comm_split 143

MPI_COMM_TEST_INTER, MPI_Comm_test_inter 145

MPI_DIMS_CREATE, MPI_Dims_create 146

MPI_Errhandler_c2f . 148

MPI_ERRHANDLER_CREATE, MPI_Errhandler_create 149

MPI_Errhandler_f2c . 151

MPI_ERRHANDLER_FREE, MPI_Errhandler_free 152

MPI_ERRHANDLER_GET, MPI_Errhandler_get 153

MPI_ERRHANDLER_SET, MPI_Errhandler_set 154

MPI_ERROR_CLASS, MPI_Error_class 156

MPI_ERROR_STRING, MPI_Error_string 159

MPI_EXSCAN, MPI_Exscan 160

MPI_File_c2f . 163

MPI_FILE_CALL_ERRHANDLER, MPI_File_call_errhandler 164

MPI_FILE_CLOSE, MPI_File_close 166

MPI_FILE_CREATE_ERRHANDLER, MPI_File_create_errhandler 168

MPI_FILE_DELETE, MPI_File_delete 170

MPI_File_f2c . 172

MPI_FILE_GET_AMODE, MPI_File_get_amode 173

MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity 174

MPI_FILE_GET_BYTE_OFFSET, MPI_File_get_byte_offset 175

MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler 176

MPI_FILE_GET_GROUP, MPI_File_get_group 178

iv IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_INFO, MPI_File_get_info 179

MPI_FILE_GET_POSITION, MPI_File_get_position 181

MPI_FILE_GET_POSITION_SHARED, MPI_File_get_position_shared 182

MPI_FILE_GET_SIZE, MPI_File_get_size 183

MPI_FILE_GET_TYPE_EXTENT, MPI_File_get_type_extent 185

MPI_FILE_GET_VIEW, MPI_File_get_view 187

MPI_FILE_IREAD, MPI_File_iread 189

MPI_FILE_IREAD_AT, MPI_File_iread_at 192

MPI_FILE_IREAD_SHARED, MPI_File_iread_shared 195

MPI_FILE_IWRITE, MPI_File_iwrite 198

MPI_FILE_IWRITE_AT, MPI_File_iwrite_at 201

MPI_FILE_IWRITE_SHARED, MPI_File_iwrite_shared 204

MPI_FILE_OPEN, MPI_File_open 207

MPI_FILE_PREALLOCATE, MPI_File_preallocate 213

MPI_FILE_READ, MPI_File_read 215

MPI_FILE_READ_ALL, MPI_File_read_all 217

MPI_FILE_READ_ALL_BEGIN, MPI_File_read_all_begin 219

MPI_FILE_READ_ALL_END, MPI_File_read_all_end 221

MPI_FILE_READ_AT, MPI_File_read_at 223

MPI_FILE_READ_AT_ALL, MPI_File_read_at_all 226

MPI_FILE_READ_AT_ALL_BEGIN, MPI_File_read_at_all_begin 229

MPI_FILE_READ_AT_ALL_END, MPI_File_read_at_all_end 231

MPI_FILE_READ_ORDERED, MPI_File_read_ordered 233

MPI_FILE_READ_ORDERED_BEGIN, MPI_File_read_ordered_begin 235

MPI_FILE_READ_ORDERED_END, MPI_File_read_ordered_end 237

MPI_FILE_READ_SHARED, MPI_File_read_shared 239

MPI_FILE_SEEK, MPI_File_seek 241

MPI_FILE_SEEK_SHARED, MPI_File_seek_shared 243

MPI_FILE_SET_ATOMICITY, MPI_File_set_atomicity 245

MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler 247

MPI_FILE_SET_INFO, MPI_File_set_info 249

MPI_FILE_SET_SIZE, MPI_File_set_size 251

MPI_FILE_SET_VIEW, MPI_File_set_view 253

MPI_FILE_SYNC, MPI_File_sync 256

MPI_FILE_WRITE, MPI_File_write 257

MPI_FILE_WRITE_ALL, MPI_File_write_all 259

MPI_FILE_WRITE_ALL_BEGIN, MPI_File_write_all_begin 262

MPI_FILE_WRITE_ALL_END, MPI_File_write_all_end 264

MPI_FILE_WRITE_AT, MPI_File_write_at 266

MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_all 269

MPI_FILE_WRITE_AT_ALL_BEGIN, MPI_File_write_at_all_begin 272

MPI_FILE_WRITE_AT_ALL_END, MPI_File_write_at_all_end 274

MPI_FILE_WRITE_ORDERED, MPI_File_write_ordered 276

MPI_FILE_WRITE_ORDERED_BEGIN, MPI_File_write_ordered_begin 278

MPI_FILE_WRITE_ORDERED_END, MPI_File_write_ordered_end 280

MPI_FILE_WRITE_SHARED, MPI_File_write_shared 282

MPI_FINALIZE, MPI_Finalize 284

MPI_FINALIZED, MPI_Finalized 286

MPI_FREE_MEM, MPI_Free_mem 287

MPI_GATHER, MPI_Gather . 288

MPI_GATHERV, MPI_Gatherv 291

MPI_GET, MPI_Get . 294

MPI_GET_ADDRESS, MPI_Get_address 297

MPI_GET_COUNT, MPI_Get_count 299

MPI_GET_ELEMENTS, MPI_Get_elements 301

MPI_GET_PROCESSOR_NAME, MPI_Get_processor_name 303

Contents v

MPI_GET_VERSION, MPI_Get_version 304

MPI_GRAPH_CREATE, MPI_Graph_create 305

MPI_GRAPH_GET, MPI_Graph_get 308

MPI_GRAPH_MAP, MPI_Graph_map 310

MPI_GRAPH_NEIGHBORS, MPI_Graph_neighbors 312

MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_neighbors_count 314

MPI_GRAPHDIMS_GET, MPI_Graphdims_get 315

MPI_GREQUEST_COMPLETE, MPI_Grequest_complete 316

MPI_GREQUEST_START, MPI_Grequest_start 317

MPI_Group_c2f . 321

MPI_GROUP_COMPARE, MPI_Group_compare 322

MPI_GROUP_DIFFERENCE, MPI_Group_difference 323

MPI_GROUP_EXCL, MPI_Group_excl 324

MPI_Group_f2c . 326

MPI_GROUP_FREE, MPI_Group_free 327

MPI_GROUP_INCL, MPI_Group_incl 328

MPI_GROUP_INTERSECTION, MPI_Group_intersection 330

MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl 331

MPI_GROUP_RANGE_INCL, MPI_Group_range_incl 333

MPI_GROUP_RANK, MPI_Group_rank 335

MPI_GROUP_SIZE, MPI_Group_size 336

MPI_GROUP_TRANSLATE_RANKS, MPI_Group_translate_ranks 337

MPI_GROUP_UNION, MPI_Group_union 339

MPI_IBSEND, MPI_Ibsend . 340

MPI_Info_c2f . 342

MPI_INFO_CREATE, MPI_Info_create 343

MPI_INFO_DELETE, MPI_Info_delete 344

MPI_INFO_DUP, MPI_Info_dup 346

MPI_Info_f2c . 347

MPI_INFO_FREE, MPI_Info_free 348

MPI_INFO_GET, MPI_Info_get 349

MPI_INFO_GET_NKEYS, MPI_Info_get_nkeys 351

MPI_INFO_GET_NTHKEY, MPI_Info_get_nthkey 352

MPI_INFO_GET_VALUELEN, MPI_Info_get_valuelen 354

MPI_INFO_SET, MPI_Info_set 356

MPI_INIT, MPI_Init . 358

MPI_INIT_THREAD, MPI_Init_thread 360

MPI_INITIALIZED, MPI_Initialized 362

MPI_INTERCOMM_CREATE, MPI_Intercomm_create 363

MPI_INTERCOMM_MERGE, MPI_Intercomm_merge 365

MPI_IPROBE, MPI_Iprobe . 367

MPI_IRECV, MPI_Irecv . 369

MPI_IRSEND, MPI_Irsend . 371

MPI_IS_THREAD_MAIN, MPI_Is_thread_main 373

MPI_ISEND, MPI_Isend . 374

MPI_ISSEND, MPI_Issend . 376

MPI_KEYVAL_CREATE, MPI_Keyval_create 378

MPI_KEYVAL_FREE, MPI_Keyval_free 380

MPI_Op_c2f . 381

MPI_OP_CREATE, MPI_Op_create 382

MPI_Op_f2c . 384

MPI_OP_FREE, MPI_Op_free 385

MPI_PACK, MPI_Pack . 386

MPI_PACK_EXTERNAL, MPI_Pack_external 388

MPI_PACK_EXTERNAL_SIZE, MPI_Pack_external_size 390

MPI_PACK_SIZE, MPI_Pack_size 392

vi IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_PCONTROL, MPI_Pcontrol 394

MPI_PROBE, MPI_Probe . 395

MPI_PUT, MPI_Put . 397

MPI_QUERY_THREAD, MPI_Query_thread 400

MPI_RECV, MPI_Recv . 402

MPI_RECV_INIT, MPI_Recv_init 404

MPI_REDUCE, MPI_Reduce 406

MPI_REDUCE_SCATTER, MPI_Reduce_scatter 409

MPI_REGISTER_DATAREP, MPI_Register_datarep 412

MPI_Request_c2f . 415

MPI_Request_f2c . 416

MPI_REQUEST_FREE, MPI_Request_free 417

MPI_REQUEST_GET_STATUS, MPI_Request_get_status 418

MPI_RSEND, MPI_Rsend . 420

MPI_RSEND_INIT, MPI_Rsend_init 422

MPI_SCAN, MPI_Scan . 424

MPI_SCATTER, MPI_Scatter 426

MPI_SCATTERV, MPI_Scatterv 429

MPI_SEND, MPI_Send . 432

MPI_SEND_INIT, MPI_Send_init 434

MPI_SENDRECV, MPI_Sendrecv 436

MPI_SENDRECV_REPLACE, MPI_Sendrecv_replace 438

MPI_SIZEOF . 440

MPI_SSEND, MPI_Ssend . 441

MPI_SSEND_INIT, MPI_Ssend_init 443

MPI_START, MPI_Start . 445

MPI_STARTALL, MPI_Startall 447

MPI_Status_c2f . 448

MPI_Status_f2c . 449

MPI_STATUS_SET_CANCELLED, MPI_Status_set_cancelled 450

MPI_STATUS_SET_ELEMENTS, MPI_Status_set_elements 451

MPI_TEST, MPI_Test . 452

MPI_TEST_CANCELLED, MPI_Test_cancelled 454

MPI_TESTALL, MPI_Testall . 455

MPI_TESTANY, MPI_Testany 457

MPI_TESTSOME, MPI_Testsome 460

MPI_TOPO_TEST, MPI_Topo_test 463

MPI_Type_c2f . 464

MPI_TYPE_COMMIT, MPI_Type_commit 465

MPI_TYPE_CONTIGUOUS, MPI_Type_contiguous 467

MPI_TYPE_CREATE_DARRAY, MPI_Type_create_darray 469

MPI_TYPE_CREATE_F90_COMPLEX, MPI_Type_create_f90_complex . . . 472

MPI_TYPE_CREATE_F90_INTEGER, MPI_Type_create_f90_integer 474

MPI_TYPE_CREATE_F90_REAL, MPI_Type_create_f90_real 475

MPI_TYPE_CREATE_HINDEXED, MPI_Type_create_hindexed 477

MPI_TYPE_CREATE_HVECTOR, MPI_Type_create_hvector 479

MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_Type_create_indexed_block 481

MPI_TYPE_CREATE_KEYVAL, MPI_Type_create_keyval 483

MPI_TYPE_CREATE_RESIZED, MPI_Type_create_resized 485

MPI_TYPE_CREATE_STRUCT, MPI_Type_create_struct 487

MPI_TYPE_CREATE_SUBARRAY, MPI_Type_create_subarray 489

MPI_TYPE_DELETE_ATTR, MPI_Type_delete_attr 491

MPI_TYPE_DUP, MPI_Type_dup 492

MPI_TYPE_EXTENT, MPI_Type_extent 494

MPI_Type_f2c . 495

MPI_TYPE_FREE, MPI_Type_free 496

Contents vii

MPI_TYPE_FREE_KEYVAL, MPI_Type_free_keyval 498

MPI_TYPE_GET_ATTR, MPI_Type_get_attr 499

MPI_TYPE_GET_CONTENTS, MPI_Type_get_contents 501

MPI_TYPE_GET_ENVELOPE, MPI_Type_get_envelope 505

MPI_TYPE_GET_EXTENT, MPI_Type_get_extent 507

MPI_TYPE_GET_NAME, MPI_Type_get_name 509

MPI_TYPE_GET_TRUE_EXTENT, MPI_Type_get_true_extent 511

MPI_TYPE_HINDEXED, MPI_Type_hindexed 513

MPI_TYPE_HVECTOR, MPI_Type_hvector 515

MPI_TYPE_INDEXED, MPI_Type_indexed 517

MPI_TYPE_LB, MPI_Type_lb 519

MPI_TYPE_MATCH_SIZE, MPI_Type_match_size 520

MPI_TYPE_SET_ATTR, MPI_Type_set_attr 522

MPI_TYPE_SET_NAME, MPI_Type_set_name 524

MPI_TYPE_SIZE, MPI_Type_size 526

MPI_TYPE_STRUCT, MPI_Type_struct 527

MPI_TYPE_UB, MPI_Type_ub 529

MPI_TYPE_VECTOR, MPI_Type_vector 531

MPI_UNPACK, MPI_Unpack 533

MPI_UNPACK_EXTERNAL, MPI_Unpack_external 535

MPI_WAIT, MPI_Wait . 537

MPI_WAITALL, MPI_Waitall . 539

MPI_WAITANY, MPI_Waitany 541

MPI_WAITSOME, MPI_Waitsome 544

MPI_Win_c2f . 547

MPI_WIN_CALL_ERRHANDLER, MPI_Win_call_errhandler 548

MPI_WIN_COMPLETE, MPI_Win_complete 550

MPI_WIN_CREATE, MPI_Win_create 552

MPI_WIN_CREATE_ERRHANDLER, MPI_Win_create_errhandler 555

MPI_WIN_CREATE_KEYVAL, MPI_Win_create_keyval 557

MPI_WIN_DELETE_ATTR, MPI_Win_delete_attr 559

MPI_Win_f2c . 560

MPI_WIN_FENCE, MPI_Win_fence 561

MPI_WIN_FREE, MPI_Win_free 564

MPI_WIN_FREE_KEYVAL, MPI_Win_free_keyval 565

MPI_WIN_GET_ATTR, MPI_Win_get_attr 566

MPI_WIN_GET_ERRHANDLER, MPI_Win_get_errhandler 568

MPI_WIN_GET_GROUP, MPI_Win_get_group 569

MPI_WIN_GET_NAME, MPI_Win_get_name 570

MPI_WIN_LOCK, MPI_Win_lock 572

MPI_WIN_POST, MPI_Win_post 574

MPI_WIN_SET_ATTR, MPI_Win_set_attr 577

MPI_WIN_SET_ERRHANDLER, MPI_Win_set_errhandler 579

MPI_WIN_SET_NAME, MPI_Win_set_name 580

MPI_WIN_START, MPI_Win_start 582

MPI_WIN_TEST, MPI_Win_test 584

MPI_WIN_UNLOCK, MPI_Win_unlock 586

MPI_WIN_WAIT, MPI_Win_wait 587

MPI_WTICK, MPI_Wtick . 589

MPI_WTIME, MPI_Wtime . 590

Appendix A. Parallel utility subroutines 591

Appendix B. Parallel task identification API subroutines 593

Appendix C. Accessibility features for PE 595

viii IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Accessibility features . 595

Keyboard navigation . 595

IBM and accessibility . 595

Notices . 597

Trademarks . 599

Acknowledgments . 600

Glossary . 601

Index . 609

Contents ix

x IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Tables

1. Typographic conventions . xiii

2. Example in MPI_GRAPH_CREATE of adjacency matrix 306

3. Input arguments for example in MPI_GRAPH_CREATE 306

4. Combiners and constructor arguments . 502

© Copyright IBM Corp. 1993, 2006 xi

||

xii IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

About this book

This book describes the subroutines provided by IBM®’s implementation of the

Message Passing Interface (MPI) standard for Parallel Environment for AIX®

(5765-F83). Programmers can use these subroutines when writing parallel

applications. To make this book a little easier to read, the name IBM Parallel

Environment has been abbreviated to PE throughout.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard. The standard is documented in two volumes, Version 1.1,

University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions

to the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee,

July 18, 1997. The second volume includes a section identified as MPI 1.2 with

clarifications and limited enhancements to MPI 1.1. It also contains the extensions

identified as MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken

together constitute the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 Enhancements, except the contents of the chapter

titled Process Creation and Management.

If you believe that PE MPI does not comply with the MPI standard for the portions

that are implemented, please contact IBM Service.

References to RS/6000® SP™ or SP include currently supported IBM eServer™

Cluster 1600 hardware.

Who should read this book

This book is intended for experienced programmers who want to write parallel

applications using the C, C++, or FORTRAN programming language. Readers of

this book should know C , C++, and FORTRAN and should be familiar with AIX and

UNIX® commands, file formats, and special files. They should also be familiar with

the Message Passing Interface (MPI) concepts. In addition, readers should be

familiar with distributed-memory machines.

Conventions and terminology used in this book

Note that in this document, LoadLeveler®® is also referred to as Tivoli® Workload

Scheduler LoadLeveler and TWS LoadLeveler.

This book uses the following typographic conventions:

 Table 1. Typographic conventions

Convention Usage

bold Bold words or characters represent system elements that you must

use literally, such as: command names, file names, flag names,

path names, PE component names (poe, for example), and

subroutines.

constant width Examples and information that the system displays appear in

constant-width typeface.

© Copyright IBM Corp. 1993, 2006 xiii

|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

||

||

||
|
|
|

||
|

Table 1. Typographic conventions (continued)

Convention Usage

italic Italicized words or characters represent variable values that you

must supply.

Italics are also used for book titles, for the first use of a glossary

term, and for general emphasis in text.

[item] Used to indicate optional items.

<Key> Used to indicate keys you press.

\ The continuation character is used in coding examples in this book

for formatting purposes.

In addition to the highlighting conventions, this manual uses the following

conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to

enter the tool command, this manual presents the instruction as:

ENTER

tool

Abbreviated names

Some of the abbreviated names used in this book follow.

AIX Advanced Interactive Executive

CSM Clusters Systems Management

CSS communication subsystem

CTSEC cluster-based security

DPCL dynamic probe class library

dsh distributed shell

GUI graphical user interface

HDF Hierarchical Data Format

IP Internet Protocol

LAPI Low-level Application Programming Interface

MPI Message Passing Interface

NetCDF Network Common Data Format

PCT Performance Collection Tool

PE IBM® Parallel Environment for AIX®

PE MPI IBM’s implementation of the MPI standard for PE

PE MPI-IO IBM’s implementation of MPI I/O for PE

POE parallel operating environment

pSeries® IBM eServer pSeries

PVT Profile Visualization Tool

RISC reduced instruction set computer

xiv IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|

||

||
|

|
|

||

||

||
|
|

|
|

|
|

|
|

|

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

RSCT Reliable Scalable Cluster Technology

rsh remote shell

STDERR standard error

STDIN standard input

STDOUT standard output

UTE Unified Trace Environment

System x IBM System x

Prerequisite and related information

The Parallel Environment for AIX library consists of:

v IBM Parallel Environment: Introduction, SA22-7947

v IBM Parallel Environment: Installation, GA22-7943

v IBM Parallel Environment: Operation and Use, Volume 1, SA22-7948

v IBM Parallel Environment: Operation and Use, Volume 2, SA22-7949

v IBM Parallel Environment: MPI Programming Guide, SA22-7945

v IBM Parallel Environment: MPI Subroutine Reference, SA22-7946

v IBM Parallel Environment: Messages, GA22-7944

To access the most recent Parallel Environment documentation in PDF and HTML

format, refer to the IBM eServer Cluster Information Center on the Web at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Both the current Parallel Environment books and earlier versions of the library are

also available in PDF format from the IBM Publications Center Web site located at:

http://www.ibm.com/shop/publications/order/

It is easiest to locate a book in the IBM Publications Center by supplying the book’s

publication number. The publication number for each of the Parallel Environment

books is listed after the book title in the preceding list.

Using LookAt to look up message explanations

LookAt is an online facility that lets you look up explanations for most of the IBM

messages you encounter, as well as for some system abends and codes. You can

use LookAt from the following locations to find IBM message explanations for

Clusters for AIX:

v The Internet. You can access IBM message explanations directly from the LookAt

Web site:

http://www.ibm.com/eserver/zseries/zos/bkserv/lookat/

v Your wireless handheld device. You can use the LookAt Mobile Edition with a

handheld device that has wireless access and an Internet browser (for example,

Internet Explorer for Pocket PCs, Blazer, or Eudora for Palm OS, or Opera for

Linux® handheld devices). Link to the LookAt Mobile Edition from the LookAt

Web site.

About this book xv

||

||

||

||

||

||

||

|
|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|
|
|

|

|
|
|
|

|
|

|

|
|
|
|
|

How to send your comments

Your feedback is important in helping to provide the most accurate and high-quality

information. If you have comments about this book or other PE documentation:

v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the

version of PE, and, if applicable, the specific location of the text you are

commenting on (for example, a page number or table number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or

by giving it to an IBM representative.

National language support (NLS)

For national language support (NLS), all PE components and tools display

messages that are located in externalized message catalogs. English versions of

the message catalogs are shipped with the PE licensed program, but your site may

be using its own translated message catalogs. The PE components use the AIX

environment variable NLSPATH to find the appropriate message catalog. NLSPATH

specifies a list of directories to search for message catalogs. The directories are

searched, in the order listed, to locate the message catalog. In resolving the path to

the message catalog, NLSPATH is affected by the values of the environment

variables LC_MESSAGES and LANG. If you get an error saying that a message

catalog is not found and you want the default message catalog:

ENTER

export NLSPATH=/usr/lib/nls/msg/%L/%N

 export LANG=C

The PE message catalogs are in English, and are located in the following

directories:

 /usr/lib/nls/msg/C

 /usr/lib/nls/msg/En_US

 /usr/lib/nls/msg/en_US

If your site is using its own translations of the message catalogs, consult your

system administrator for the appropriate value of NLSPATH or LANG. For more

information on NLS and message catalogs, see AIX: General Programming

Concepts: Writing and Debugging Programs.

Summary of changes for Parallel Environment 4.3

This release of IBM Parallel Environment for AIX contains a number of functional

enhancements, including:

v PE 4.3 supports only AIX 5L™ Version 5.3 Technology Level 5300-05, or later

versions.

AIX 5L Version 5.3 Technology Level 5300-05 is referred to as AIX 5L V5.3 TL

5300-05 or AIX 5.3.

v Support for Parallel Systems Support Programs for AIX (PSSP), the SP Switch2,

POWER3™ servers, DCE, and DFS™ has been removed. PE 4.2 is the last

release that supported these products.

v PE Benchmarker support for IBM System p5™ model 575 has been added.

xvi IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|

|
|

|

|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

||

|
|

|

|

|

|
|
|
|

|
|

|
|

|
|

|
|

|
|
|

|

v A new environment variable, MP_TLP_REQUIRED is available to detect the

situation where a parallel job that should be using large memory pages is

attempting to run with small pages.

v A new command, rset_query, for verifying that memory affinity assignments

have been performed.

v Performance of MPI one-sided communication has been substantially improved.

v Performance improvements to some MPI collective communication subroutines.

v The default value for the MP_BUFFER_MEM environment variable, which

specifies the size of the Early Arrival (EA) buffer, is now 64 MB for both IP and

User Space. In some cases, 32 bit IP applications may need to be recompiled

with more heap or run with MP_BUFFER_MEM of less than 64 MB. For more

details, see the migration information in Chapter 1 of IBM Parallel Environment:

Operation and Use, Volume 1 and Appendix E of IBM Parallel Environment: MPI

Programming Guide.

About this book xvii

|
|
|

|
|

|

|

|
|
|
|
|
|
|

xviii IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Chapter 1. A sample MPI subroutine

PE MPI subroutines and functions are available for use in parallel programming. For

each subroutine or function, there are descriptions of some or all of the following

headings, as appropriate:

v Purpose

v C synopsis

v C++ synopsis

v FORTRAN synopsis

v Description

v Parameters

v Notes

v Errors

v Related information

Review this sample before proceeding to better understand how the subroutine and

function descriptions are structured.

© Copyright IBM Corp. 1993, 2006 1

|
|
|

|

|

|

|

|

|

|

|

|

A_SAMPLE_MPI_SUBROUTINE, A_Sample_MPI_subroutine

Purpose

Provides a brief description of the subroutine or function.

C synopsis

Header file mpi.h supplies ANSI-C prototypes for every subroutine and function

described in Chapter 3, “MPI subroutines and functions,” on page 47.

#include <mpi.h>

int A_Sample_MPI_subroutine (one or more parameters);

In the C prototype, a declaration of void * indicates that a pointer to any data type

is allowable.

C++ synopsis

#include mpi.h

type MPI::A_Sample_MPI_subroutine(one or more parameters);

In the C++ prototype, a declaration of void* indicates that a pointer to any data type

is allowable.

For information about predefined constants for C++, see IBM Parallel Environment:

MPI Programming Guide.

FORTRAN synopsis

include ’mpif.h’ or use mpi

A_SAMPLE_MPI_SUBROUTINE (ONE OR MORE PARAMETERS);

In the FORTRAN subroutines, formal parameters are described using a subroutine

prototype format, even though FORTRAN does not support prototyping. The term

CHOICE indicates that any FORTRAN data type is valid.

Description

A detailed description of the subroutine or function.

Parameters

A list of argument or parameter definitions, as follows:

parameter_1

description of parameter_1 (type)

...

...

parameter_n

description of parameter_n (type)

IERROR

is the FORTRAN return code. It is always the last argument.

Parameter types:

IN A call uses this parameter, but does not update an argument.

A_SAMPLE_MPI_SUBROUTINE

2 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

INOUT

A call uses this parameter and updates an argument.

OUT A call returns information by way of an argument, but does not use its input

value.

Notes

If applicable, contains notes about PE MPI, as it relates to the requirements of the

MPI standard. PE MPI intends to comply fully with the requirements of the MPI

standard. There are some issues, however, that the MPI standard leaves open to

the implementation’s choice.

Errors

For non-file-handle errors, a single list appears here.

For errors on a file handle, up to three lists appear:

v Fatal errors:

Non-recoverable errors are listed here.

v Returning errors (MPI error class):

Errors that by default return an error code to the caller appear here. These are

normally recoverable errors and the error class is specified so you can identify

the cause of failure.

v Errors returned by completion routine (MPI error class):

Errors that by default return an error code to the caller at one of the WAIT or

TEST calls appear here. These are normally recoverable errors and the error

class is specified so you can identify the cause of failure.

In almost every subroutine, the C version is invoked as a function returning integer.

The FORTRAN version takes one more argument than the C version, which is used

to return any error value.

For more information about errors, see IBM Parallel Environment: Messages, which

provides a listing of all the error messages issued as well as the error class to

which the message belongs.

Related information

A list of the related subroutines or functions.

For C and FORTRAN, MPI uses the same spelling for subroutine names. The only

distinction is the capitalization. For the purpose of clarity, when referring to a

subroutine without specifying whether it is the FORTRAN version or the C version,

all uppercase letters are used.

FORTRAN refers to FORTRAN 77 (F77) bindings, which are officially supported for

MPI. However, F77 bindings for MPI can be used by FORTRAN 90. FORTRAN 90

offer array section and assumed shape arrays as parameters on calls. These are

not safe with MPI.

A_SAMPLE_MPI_SUBROUTINE

Chapter 1. A sample MPI subroutine 3

|

A_SAMPLE_MPI_SUBROUTINE

4 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Chapter 2. Nonblocking collective communication subroutines

These are the nonblocking collective communication subroutines that are available

for parallel programming. These subroutines, which have a prefix of MPE_I, are

extensions of the MPI standard. They are part of IBM’s implementation of the MPI

standard for PE. Review Chapter 1, “A sample MPI subroutine,” on page 1 before

proceeding to better understand how the subroutine descriptions are structured.

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives. With this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For more information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

For more information about matching blocking and nonblocking collectives in the

same application, see the chapter Programming considerations for user application

in POE in IBM Parallel Environment: MPI Programming Guide.

The MPI-2 extensions related to collective communication are now available for all

MPI blocking collectives. The MPE_I nonblocking collectives have not been

enhanced with MPI-2 functionality. The MPE_I nonblocking collectives are

semantically equivalent to MPI-1.

© Copyright IBM Corp. 1993, 2006 5

|
|
|
|
|

MPE_IALLGATHER, MPE_Iallgather

Purpose

Performs a nonblocking allgather operation.

C synopsis

#include <mpi.h>

int MPE_Iallgather(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,

 MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,

 INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLGATHER. It performs the same

function as MPI_ALLGATHER except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements in the send buffer (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements received from any task (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

MPE_IALLGATHER

6 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of your applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective communication routines generally do,

tasks running at different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid counts

count < 0

Invalid datatypes

Type not committed

Unequal message length

MPE_IALLGATHER

Chapter 2. Nonblocking collective communication subroutines 7

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent message length

Match of blocking and non-blocking collectives

Related information

 MPI_ALLGATHER

MPE_IALLGATHER

8 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPE_IALLGATHERV, MPE_Iallgatherv

Purpose

Performs a nonblocking allgatherv operation.

C synopsis

#include <mpi.h>

int MPE_Iallgatherv(void* sendbuf,int sendcount,

 MPI_Datatype sendtype,void* recvbuf,int recvcounts,

 int *displs,MPI_Datatype recvtype,

 MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),

 INTEGER RECVTYPE,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLGATHERV. It performs the

same function as MPI_ALLGATHERV except that it returns a request handle that

must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements in the send buffer (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcounts

An integer array (of length group size) that contains the number of elements

received from each task (IN)

displs An integer array (of length group size). Entry i specifies the displacement

(relative to recvbuf) at which to place the incoming data from task i (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

MPE_IALLGATHERV

Chapter 2. Nonblocking collective communication subroutines 9

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid counts

count < 0

MPE_IALLGATHERV

10 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid datatypes

Type not committed

Unequal message length

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Match of blocking and non-blocking collectives

Related information

 MPI_ALLGATHERV

MPE_IALLGATHERV

Chapter 2. Nonblocking collective communication subroutines 11

MPE_IALLREDUCE, MPE_Iallreduce

Purpose

Performs a nonblocking allreduce operation.

C synopsis

#include <mpi.h>

int MPE_Iallreduce(void* sendbuf,void* recvbuf,int count,

 MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,

 MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

 INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER REQUEST,

 INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLREDUCE. It performs the

same function as MPI_ALLREDUCE except that it returns a request handle that

must be explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

recvbuf

The starting address of the receive buffer (choice) (OUT)

count The number of elements in the send buffer (integer) (IN)

datatype

The data type of elements in the send buffer (handle) (IN)

op The reduction operation (handle) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

MPE_IALLREDUCE

12 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type

must be intra-communicator

Unequal message length

MPI_IN_PLACE not valid

MPI not initialized

MPE_IALLREDUCE

Chapter 2. Nonblocking collective communication subroutines 13

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent datatype

Inconsistent message length

Inconsistent op

Match of blocking and non-blocking collectives

Related information

 MPI_ALLREDUCE

MPE_IALLREDUCE

14 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPE_IALLTOALL, MPE_Ialltoall

Purpose

Performs a nonblocking alltoall operation.

C synopsis

#include <mpi.h>

int MPE_Ialltoall(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm,

 MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER COMM,

 INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLTOALL. It performs the same

function as MPI_ALLTOALL except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements sent to each task (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements received from any task (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

MPE_IALLTOALL

Chapter 2. Nonblocking collective communication subroutines 15

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid communicator

Invalid communicator type

must be intra-communicator

Unequal message lengths

MPE_IALLTOALL

16 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent message length

Match of blocking and non-blocking collectives

Related information

 MPI_ALLTOALL

MPE_IALLTOALL

Chapter 2. Nonblocking collective communication subroutines 17

MPE_IALLTOALLV, MPE_Ialltoallv

Purpose

Performs a nonblocking alltoallv operation.

C synopsis

#include <mpi.h>

int MPE_Ialltoallv(void* sendbuf,int *sendcounts,int *sdispls,

 MPI_Datatype sendtype,void* recvbuf,int *recvcounts,int *rdispls,

 MPI_Datatype recvtype,MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_ALLTOALLV(CHOICE SENDBUF,INTEGER SENDCOUNTS(*),

 INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE RECVBUF,

 INTEGER RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER RECVTYPE,

 INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_ALLTOALLV. It performs the same

function as MPI_ALLTOALLV, except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcounts

An integer array (of length group size) specifying the number of elements to

send to each task (IN)

sdispls

An integer array (of length group size). Entry j specifies the displacement

relative to sendbuf from which to take the outgoing data destined for task j.

(IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcounts

An integer array (of length group size) specifying the number of elements

that can be received from each task (IN)

rdispls

An integer array (of length group size). Entry i specifies the displacement

relative to recvbuf at which to place the incoming data from task i. (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

MPE_IALLTOALLV

18 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid counts

count < 0

MPE_IALLTOALLV

Chapter 2. Nonblocking collective communication subroutines 19

Invalid datatypes

Type not committed

Invalid communicator

Invalid communicator type

must be intra-communicator

A send and receive have unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

 Develop mode error (returned in the WAIT) if:

Match of blocking and non-blocking collectives

Related information

 MPI_ALLTOALLV

MPE_IALLTOALLV

20 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPE_IBARRIER, MPE_Ibarrier

Purpose

Performs a nonblocking barrier operation.

C synopsis

#include <mpi.h>

int MPE_Ibarrier(MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IBARRIER(INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_BARRIER. It returns immediately,

without blocking, but will not complete (using MPI_WAIT or MPI_TEST) until all

group members have called it.

Parameters

comm A communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

A typical use of MPE_IBARRIER is to make a call to it, and then periodically test for

completion with MPI_TEST. Completion indicates that all tasks in comm have

arrived at the barrier. Until then, computation can continue.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

MPE_IBARRIER

Chapter 2. Nonblocking collective communication subroutines 21

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid communicator

Invalid communicator type

must be intra-communicator

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Match of blocking and non-blocking collectives

Related information

 MPI_BARRIER

MPE_IBARRIER

22 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPE_IBCAST, MPE_Ibcast

Purpose

Performs a nonblocking broadcast operation.

C synopsis

#include <mpi.h>

int MPE_Ibcast(void* buffer,int count,MPI_Datatype datatype,

 int root,MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IBCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER DATATYPE,INTEGER ROOT,

 INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_BCAST. It performs the same

function as MPI_BCAST except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

buffer The starting address of the buffer (choice) (INOUT)

count The number of elements in the buffer (integer) (IN)

datatype

The data type of the buffer elements (handle) (IN)

root The rank of the root task (integer) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

MPE_IBCAST

Chapter 2. Nonblocking collective communication subroutines 23

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Error Conditions:

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid root

root < 0 or root >= groupsize

Unequal message length

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

MPE_IBCAST

24 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Develop mode error (returned in the WAIT) if:

Inconsistent message length

Inconsistent root

Match of blocking and non-blocking collectives

Related information

 MPI_BCAST

MPE_IBCAST

Chapter 2. Nonblocking collective communication subroutines 25

MPE_IGATHER, MPE_Igather

Purpose

Performs a nonblocking gather operation.

C synopsis

#include <mpi.h>

int MPE_Igather(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,

 MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,

 INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_GATHER. It performs the same

function as MPI_GATHER, except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements in the send buffer (integer) (IN)

sendtype

The data type of the send buffer elements (integer) (IN)

recvbuf

The address of the receive buffer (choice, significant only at root) (OUT)

recvcount

The number of elements for any single receive (integer, significant only at

root) (IN)

recvtype

The data type of the receive buffer elements (handle, significant at root)

(IN)

root The rank of the receiving task (integer) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

MPE_IGATHER

26 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid counts

count < 0

MPE_IGATHER

Chapter 2. Nonblocking collective communication subroutines 27

Invalid datatypes

Type not committed

Invalid root

root < 0 or root >= groupsize

Unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

 Develop mode error (returned in the WAIT) if:

Inconsistent message length

Inconsistent root

Match of blocking and non-blocking collectives

Related information

 MPI_GATHER

MPE_IGATHER

28 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPE_IGATHERV, MPE_Igatherv

Purpose

Performs a nonblocking gatherv operation.

C synopsis

#include <mpi.h>

int MPE_Igatherv(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcounts,int *displs,MPI_Datatype recvtype,

 int root,MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),

 INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER REQUEST,

 INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_GATHERV. It performs the same

function as MPI_GATHERV except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements to be sent (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice, significant only at root) (OUT)

recvcounts

An integer array (of length group size) that contains the number of elements

received from each task (significant only at root) (IN)

displs An integer array (of length group size). Entry i specifies the displacement

relative to recvbuf at which to place the incoming data from task i

(significant only at root) (IN)

recvtype

The data type of the receive buffer elements (handle, significant only at

root) (IN)

root The rank of the receiving task (integer) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPE_IGATHERV

Chapter 2. Nonblocking collective communication subroutines 29

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid communicator

MPE_IGATHERV

30 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid communicator type

must be intra-communicator

Invalid counts

Invalid datatypes

Type not committed

Invalid root

root < 0 or root >= groupsize

A send and receive have unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent root

Match of blocking and non-blocking collectives

Related information

 MPI_GATHERV

MPE_IGATHERV

Chapter 2. Nonblocking collective communication subroutines 31

MPE_IREDUCE, MPE_Ireduce

Purpose

Performs a nonblocking reduce operation.

C synopsis

#include <mpi.h>

int MPE_Ireduce(void* sendbuf,void* recvbuf,int count,

 MPI_Datatype datatype,MPI_Op op,int root,MPI_Comm comm,

 MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

 INTEGER DATATYPE,INTEGER OP,INTEGER ROOT,INTEGER COMM,

 INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_REDUCE. It performs the same

function as MPI_REDUCE except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The address of the send buffer (choice) (IN)

recvbuf

The address of the receive buffer (choice, significant only at root) (OUT)

count The number of elements in the send buffer (integer) (IN)

datatype

The data type of elements of the send buffer (handle) (IN)

op The reduction operation (handle) (IN)

root The rank of the root task (integer) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

MPE_IREDUCE

32 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid op

Invalid root

root < 0 or root > = groupsize

Invalid communicator

MPE_IREDUCE

Chapter 2. Nonblocking collective communication subroutines 33

Invalid communicator type

must be intra-communicator

Unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent datatype

Inconsistent message length

Inconsistent op

Inconsistent root

Match of blocking and non-blocking collectives

Related information

 MPI_REDUCE

MPE_IREDUCE

34 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPE_IREDUCE_SCATTER, MPE_Ireduce_scatter

Purpose

Performs a nonblocking reduce_scatter operation.

C synopsis

#include <mpi.h>

int MPE_Ireduce_scatter(void* sendbuf,void* recvbuf,int *recvcounts,

 MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,

 MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_IREDUCE_SCATTER(CHOICE SENDBUF,CHOICE RECVBUF,

 INTEGER RECVCOUNTS(*),INTEGER DATATYPE,INTEGER OP,

 INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_REDUCE_SCATTER. It performs

the same function as MPI_REDUCE_SCATTER except that it returns a request

handle that must be explicitly completed by using one of the MPI wait or test

operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

recvbuf

The starting address of the receive buffer (choice) (OUT)

recvcounts

An integer array specifying the number of elements in result distributed to

each task. Must be identical on all calling tasks. (IN)

datatype

The data type of elements in the input buffer (handle) (IN)

op The reduction operation (handle) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

MPE_IREDUCE_SCATTER

Chapter 2. Nonblocking collective communication subroutines 35

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid recvcounts

recvcounts(i) < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type

must be intra-communicator

MPE_IREDUCE_SCATTER

36 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent datatype

Inconsistent op

Match of blocking and non-blocking collectives

Related information

 MPI_REDUCE_SCATTER

MPE_IREDUCE_SCATTER

Chapter 2. Nonblocking collective communication subroutines 37

MPE_ISCAN, MPE_Iscan

Purpose

Performs a nonblocking scan operation.

C synopsis

#include <mpi.h>

int MPE_Iscan(void* sendbuf,void* recvbuf,int count,

 MPI_Datatype datatype,MPI_Op op,MPI_Comm comm,

 MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_ISCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

 INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER REQUEST,

 INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_SCAN. It performs the same

function as MPI_SCAN except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

recvbuf

The starting address of the receive buffer (choice) (OUT)

count The number of elements in sendbuf (integer) (IN)

datatype

The data type of elements in sendbuf (handle) (IN)

op The reduction operation (handle) (IN)

comm The communicator (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

MPE_ISCAN

38 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Invalid communicator type

must be intra-communicator

Unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPE_ISCAN

Chapter 2. Nonblocking collective communication subroutines 39

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent datatype

Inconsistent message length

Inconsistent op

Match of blocking and non-blocking collectives

Related information

 MPI_SCAN

MPE_ISCAN

40 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPE_ISCATTER, MPE_Iscatter

Purpose

Performs a nonblocking scatter operation.

C synopsis

#include <mpi.h>

int MPE_Iscatter(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,

 MPI_Comm comm,MPI_Request *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_ISCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,

 INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_SCATTER. It performs the same

function as MPI_SCATTER except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The address of the send buffer (choice, significant only at root) (IN)

sendcount

The number of elements to be sent to each task (integer, significant only at

root) (IN)

sendtype

The data type of the send buffer elements (handle, significant only at root)

(IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements in the receive buffer (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

root The rank of the sending task (integer) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

MPE_ISCATTER

Chapter 2. Nonblocking collective communication subroutines 41

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid counts

count < 0

MPE_ISCATTER

42 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid datatypes

Type not committed

Invalid root

root < 0 or root >= groupsize

Unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

Develop mode error (returned in the WAIT) if:

Inconsistent message length

Inconsistent root

Match of blocking and non-blocking collectives

Related information

 MPI_SCATTER

MPE_ISCATTER

Chapter 2. Nonblocking collective communication subroutines 43

MPE_ISCATTERV, MPE_Iscatterv

Purpose

Performs a nonblocking scatterv operation.

C synopsis

#include <mpi.h>

int MPE_Iscatterv(void* sendbuf,int *sendcounts,int *displs,

 MPI_Datatype sendtype,void* recvbuf,int recvcount,

 MPI_Datatype recvtype,int root,MPI_Comm comm,MPI_Comm *request);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPE_ISCATTERV(CHOICE SENDBUF,INTEGER SENDCOUNTS(*),INTEGER DISPLS(*),

 INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,

 INTEGER ROOT,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is a nonblocking version of MPI_SCATTERV. It performs the same

function as MPI_SCATTERV except that it returns a request handle that must be

explicitly completed by using one of the MPI wait or test operations.

Parameters

sendbuf

The address of the send buffer (choice, significant only at root) (IN)

sendcounts

An integer array (of length group size) that contains the number of elements

to send to each task (significant only at root) (IN)

displs An integer array (of length group size). Entry i specifies the displacement

relative to sendbuf from which to take the outgoing data to task i

(significant only at root) (IN)

sendtype

The data type of the send buffer elements (handle, significant only at root)

(IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements in the receive buffer (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

root The rank of the sending task (integer) (IN)

comm The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPE_ISCATTERV

44 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Notes

The MPE_I nonblocking collectives provided by PE MPI were well-suited to the

early implementation of MPI on AIX, which used signals for asynchronous progress.

They are not well-suited to a threads-based implementation of MPI. The MPE_I

nonblocking collectives will remain supported by the MPI library, but the use of

these nonstandard subroutines, in new or restructured applications, is now

deprecated.

The MPE prefix used with this subroutine indicates that it is an IBM extension to the

MPI standard and is not part of the standard itself. MPE routines are provided to

enhance the function and the performance of user applications, but applications that

use them will not be directly portable to other MPI implementations.

Nonblocking collective communication routines allow for increased efficiency and

flexibility in some applications. Because these routines do not synchronize the

participating tasks like blocking collective routines generally do, tasks running at

different speeds do not waste time waiting for each other.

When it is expected that tasks will be reasonably synchronized, the blocking

collective communication routines provided by standard MPI will commonly give

better performance than the nonblocking versions.

Early versions of PE MPI allowed the mixing of MPE_I (nonblocking) and MPI_

(blocking) calls in a single collective operation. With PE Version 4, there is a new

shared memory based optimization for certain MPI collective operations, available in

64-bit executables and enabled by default. The shared memory optimization is not

suitable for nonblocking collectives, so with this optimization enabled, affected

collective operations that mix blocking and nonblocking calls will deadlock.

MP_EUIDEVELOP mode has been enhanced to detect this mix and issue an error

message. For further information on the shared memory optimization, refer to the

description of MP_SHARED_MEMORY in IBM Parallel Environment: MPI

Programming Guide.

The PE/MPI library has a limit of seven outstanding nonblocking collective calls. A

nonblocking call is considered outstanding between the time the call is made and

the time the wait is completed. This restriction does not apply to any call defined by

the MPI standard.

Applications using nonblocking collective calls often perform best when they run in

interrupt mode.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator are started in the same order at each task.

See IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPE_I routines have not been enhanced to use MPI-2 extensions. This routine, and

all MPE_I nonblocking collectives are semantically equivalent to MPI-1.

Use of MPE_I nonblocking collective communications rules out setting environment

variable MP_SINGLE_THREAD, or the command line flag -single_thread to yes.

Errors

Invalid communicator

MPE_ISCATTERV

Chapter 2. Nonblocking collective communication subroutines 45

Invalid communicator type

must be intra-communicator

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid root

root < 0 or root >= groupsize

Unequal message lengths

MPI_IN_PLACE not valid

MPI not initialized

MPI already finalized

 Develop mode error (returned in the WAIT) if:

Inconsistent root

Match of blocking and non-blocking collectives

Related information

 MPI_SCATTERV

MPE_ISCATTERV

46 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Chapter 3. MPI subroutines and functions

These are the MPI subroutines and functions that are available for parallel

programming. Each of these subroutines and functions is defined in the MPI

standard. Codes that use these subroutines and functions can be ported to another

MPI implementation through re-compilation of the source code. Review Chapter 1,

“A sample MPI subroutine,” on page 1 before proceeding to better understand how

the subroutine and function descriptions are structured.

Do not match blocking (MPI) and nonblocking (MPE_I) collectives in the same

64-bit application. If it is suspected a hang may be due to such mixing, turn on

DEVELOP mode by setting the environment variable MP_EUIDEVELOP to yes,

and look for error messages. If you receive a message about a mismatch, either

run with MP_SHARED_MEMORY set to no, or change the application to no longer

match blocking and nonblocking collectives.

For more information about matching blocking and nonblocking collectives in the

same application, see the chapter Programming considerations for user application

in POE of IBM Parallel Environment: MPI Programming Guide.

© Copyright IBM Corp. 1993, 2006 47

|
|
|
|
|
|

MPI_ABORT, MPI_Abort

Purpose

Forces all tasks of an MPI job to terminate.

C synopsis

#include <mpi.h>

int MPI_Abort(MPI_Comm comm,int errorcode);

C++ synopsis

#include mpi.h

void MPI::Comm::Abort(int errorcode);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ABORT(INTEGER COMM,INTEGER ERRORCODE,INTEGER IERROR)

Description

This subroutine forces an MPI program to terminate all tasks in the job. comm

currently is not used. All tasks in the job are aborted. The low-order 8 bits of

errorcode are returned as an AIX return code.

Parameters

comm

The communicator of the tasks to abort. (IN)

errorcode

The error code returned to the invoking environment. (IN)

IERROR

The FORTRAN return code. This is always the last argument.

Notes

MPI_ABORT causes all tasks to exit immediately.

Errors

MPI already finalized

MPI not initialized

MPI_ABORT

48 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ACCUMULATE, MPI_Accumulate

Purpose

Accumulates, according to the specified reduction operation, the contents of the

origin buffer to the specified target buffer.

C synopsis

#include <mpi.h>

int MPI_Accumulate (void *origin_addr, int origin_count,

 MPI_Datatype origin_datatype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_datatype, MPI_Op op,

 MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Accumulate(const void* origin_addr, int origin_count,

 const MPI::Datatype& origin_datatype,

 int target_rank, MPI::Aint target_disp,

 int target_count, const MPI::Datatype& target_datatype,

 const MPI::Op& op) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ACCUMULATE (CHOICE ORIGIN_ADDR, INTEGER ORIGIN_COUNT,

 INTEGER ORIGIN_DATATYPE, INTEGER TARGET_RANK,

 INTEGER TARGET_DISP, INTEGER TARGET_COUNT,

 INTEGER TARGET_DATATYPE, INTEGER OP,

 INTEGER WIN, INTEGER IERROR)

Description

This subroutine accumulates the contents of the origin buffer (as defined by

origin_addr, origin_count, and origin_datatype) to the buffer specified by arguments

target_count and target_datatype, at offset target_disp, in the target window

specified by target_rank and win, using the operation op. MPI_ACCUMULATE is

similar to MPI_PUT, except that data is combined into (rather than overwritten in)

the target area.

This is a list of the predefined reduction operations that can be used. User-defined

functions cannot be used. For example, if op is MPI_SUM, each element of the

origin buffer is added to the corresponding element in the target, replacing the

former value in the target.

Operation Definition

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_BXOR Bitwise XOR

MPI_LAND Logical AND

MPI_LOR Logical OR

MPI_LXOR Logical XOR

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_ACCUMULATE

Chapter 3. MPI subroutines and functions 49

|
|
|
|

||

||

||

||

||

||

||

||

||

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_PROD Product

MPI_REPLACE f(a,b) = b (The current value in the target memory

is replaced by the value supplied by the origin.)

MPI_SUM Sum

Each data type argument must be a predefined data type or a derived data type,

where all basic components are of the same predefined data type. Both data type

arguments must be constructed from the same predefined data type. The operation

op applies to elements of that predefined type. target_datatype must not specify

overlapping entries, and the target buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, corresponds to the associative

function f(a,b) = b. That is, the current value in the target memory is replaced by the

value supplied by the origin.

Concurrent MPI_ACCUMULATEs with MPI_REPLACE differs from concurrent

MPI_PUT in that MPI_REPLACE guarantees each update will be atomic at element

by element granularity.

Parameters

origin_addr

The initial address of the origin buffer (choice) (IN)

origin_count

The number of entries in origin buffer (nonnegative integer) (IN)

origin_datatype

The data type of each entry in the origin buffer (handle) (IN)

target_rank

The rank of the target (nonnegative integer) (IN)

target_disp

The displacement from the start of the window to the target buffer (nonnegative

integer) (IN)

target_count

The number of entries in the target buffer (nonnegative integer) (IN)

target_datatype

The data type of each entry in the target buffer (handle) (IN)

op The reduction operation (handle) (IN)

win

The window object used for communication (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_ACCUMULATE does not require that data move from origin to target until

some synchronization occurs. PE MPI may try to combine multiple puts to a target

within an epoch into a single data transfer. The user must not modify the source

MPI_ACCUMULATE

50 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

||

||

||

||
|

||

|
|
|

buffer or make any assumption about the contents of the destination buffer until

after a synchronization operation has closed the epoch.

On some systems, there may be reasons to use special memory for one-sided

communication buffers. MPI_ALLOC_MEM may be the preferred way to allocate

buffers on these systems. With PE MPI, there is no advantage to using

MPI_ALLOC_MEM, but you can use it to improve the portability of your MPI code.

Errors

Invalid origin count (count)

Invalid origin datatype (handle)

Invalid target rank (rank)

Invalid target displacement (value)

Invalid target count (count)

Invalid target datatype (handle)

Invalid window handle (handle)

Target outside access group

Origin buffer too small (size)

Target buffer ends outside target window

Target buffer starts outside target window

RMA communication call outside access epoch

RMA communication call in progress

RMA synchronization call in progress

Origin datatype inappropriate for accumulate

Target datatype inappropriate for accumulate

Incompatible origin and target datatypes

Invalid reduction operation (op)

Related information

 MPI_GET

 MPI_PUT

MPI_ACCUMULATE

Chapter 3. MPI subroutines and functions 51

MPI_ADD_ERROR_CLASS, MPI_Add_error_class

Purpose

Creates a new error class and returns the value for it.

C synopsis

#include <mpi.h>

int MPI_Add_error_class(int *errorclass);

C++ synopsis

#include mpi.h

int MPI::Add_error_class();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ADD_ERROR_CLASS(INTEGER ERRORCLASS, INTEGER IERROR)

Description

This subroutine creates a new error class and returns the value for it so that the

user classes do not conflict with any existing codes or classes. See subroutine

“MPI_ERROR_CLASS, MPI_Error_class” on page 156 for a list of the predefined

PE MPI error classes.

Parameters

errorclass

The value for the new error class (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Because a call to MPI_ADD_ERROR_CLASS is local, the same error class may not

be returned on all tasks that make this call. Thus, it is not safe to assume that

registering a new error class or code on a set of tasks at the same time will yield

the same error class or code on all of the tasks. Only if all calls to create an error

class or code occur in the same order on each task of MPI_COMM_WORLD will

the values be globally consistent. The value of MPI_ERR_LASTCODE is not

affected by new user-defined error codes and classes, as it is a constant value.

Instead, a predefined attribute key MPI_LASTUSEDCODE is associated with

MPI_COMM_WORLD. The attribute value corresponding to this key is the current

maximum error class including the user-defined ones. This is a local value and may

be different on different tasks. The value returned by this key is always greater than

or equal to MPI_ERR_LASTCODE.

The value returned by the key MPI_LASTUSEDCODE will not change unless the

user calls a function to explicitly add an error class or code. In a multi-threaded

environment, the user must take extra care in assuming this value has not changed.

Note that error codes and error classes are not necessarily dense. A user may not

assume that each error class below MPI_LASTUSEDCODE is valid. An error is

returned if the user tries to set the predefined MPI_LASTUSEDCODE using

MPI_COMM_SET_ATTR.

MPI_ADD_ERROR_CLASS

52 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Fatal errors:

MPI already finalized

MPI not initialized

Related information

 MPI_ADD_ERROR_CODE

 MPI_ADD_ERROR_STRING

 MPI_ERROR_CLASS

 MPI_ERROR_STRING

MPI_ADD_ERROR_CLASS

Chapter 3. MPI subroutines and functions 53

MPI_ADD_ERROR_CODE, MPI_Add_error_code

Purpose

Creates a new error code associated with errorclass and returns its value in

errorcode.

C synopsis

#include <mpi.h>

int MPI_Add_error_code(int errorclass, int *errorcode);

C++ synopsis

#include mpi.h

int MPI::Add_error_code(int errorclass);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ADD_ERROR_CODE(INTEGER ERRORCLASS, INTEGER ERRORCODE, INTEGER IERROR)

Description

This subroutine creates a new error code associated with errorclass and returns its

value in errorcode so that there are no conflicts with existing codes or classes.

Parameters

errorclass

The error class (integer) (IN)

errorcode

The new error code associated with errorclass (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Because a call to MPI_ADD_ERROR_CLASS is local, the same error class may not

be returned on all tasks that make this call. Thus, it is not safe to assume that

registering a new error class or code on a set of tasks at the same time will yield

the same error class or code on all of the tasks. Only if all calls to create an error

class or code occur in the same order on each task of MPI_COMM_WORLD will

the values be globally consistent. The value of MPI_ERR_LASTCODE is not

affected by new user-defined error codes and classes, as it is a constant value.

Instead, a predefined attribute key MPI_LASTUSEDCODE is associated with

MPI_COMM_WORLD. The attribute value corresponding to this key is the current

maximum error class including the user-defined ones. This is a local value and may

be different on different tasks. The value returned by this key is always greater than

or equal to MPI_ERR_LASTCODE.

The value returned by the key MPI_LASTUSEDCODE will not change unless the

user calls a function to explicitly add an error class or code. In a multi-threaded

environment, the user must take extra care in assuming this value has not changed.

Note that error codes and error classes are not necessarily dense. A user may not

assume that each error class below MPI_LASTUSEDCODE is valid. An error is

returned if the user tries to set the predefined MPI_LASTUSEDCODE using

MPI_COMM_SET_ATTR.

MPI_ADD_ERROR_CODE

54 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Fatal errors:

Invalid error class

MPI already finalized

MPI not initialized

Related information

 MPI_ADD_ERROR_CLASS

 MPI_ADD_ERROR_STRING

 MPI_ERROR_CLASS

 MPI_ERROR_STRING

MPI_ADD_ERROR_CODE

Chapter 3. MPI subroutines and functions 55

MPI_ADD_ERROR_STRING, MPI_Add_error_string

Purpose

Associates an error string with an error code or class.

C synopsis

#include <mpi.h>

int MPI_Add_error_string(int errorcode, char *string);

C++ synopsis

#include mpi.h

void MPI::Add_error_string(int errorcode, const char* string);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ADD_ERROR_STRING(INTEGER ERRORCODE, CHARACTER*(*) STRING, INTEGER IERROR)

Description

This subroutine associates an error string with an error code or class. The string

length must be no more than the value specified by MPI_MAX_ERROR_STRING

(128 characters).

Parameters

errorcode

The error code or class (integer) (IN)

string

The text corresponding to errorcode (string) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The length of the string does not include the null terminator in C or C++. Trailing

blanks are deleted in FORTRAN. Calling MPI_ADD_ERROR_STRING for an error

code that already has a string will replace the old string with the new string. It is

erroneous to call MPI_ADD_ERROR_STRING for an error code or class with a

value that is less than or equal to the value specified by MPI_ERR_LASTCODE. In

other words, error strings on PE MPI-defined errors cannot be replaced. If

MPI_ERROR_STRING is called when no string has been set, it returns a empty

string (all spaces in FORTRAN or ″″ in C and C++).

Errors

Fatal errors:

Error string too long

Improper error message change

Invalid error code

MPI already finalized

MPI not initialized

MPI_ADD_ERROR_STRING

56 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_ADD_ERROR_CLASS

 MPI_ADD_ERROR_STRING

 MPI_ERROR_CLASS

 MPI_ERROR_STRING

MPI_ADD_ERROR_STRING

Chapter 3. MPI subroutines and functions 57

MPI_ADDRESS, MPI_Address

Purpose

Returns the address of a variable in memory.

C synopsis

#include <mpi.h>

int MPI_Address(void* location,MPI_Aint *address);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ADDRESS(CHOICE LOCATION,INTEGER ADDRESS,INTEGER IERROR)

Description

This subroutine returns the byte address of location.

Parameters

location

The location in caller memory (choice) (IN)

address

The address of location (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_GET_ADDRESS supersedes MPI_ADDRESS.

The FORTRAN MPI_ADDRESS binding is not valid for 64-bit FORTRAN programs

because it is not possible to predict when an address will fit in 32 bits.

MPI_ADDRESS is equivalent to address= (MPI_Aint) location in C, but this

subroutine is portable to processors with less straightforward addressing.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_HINDEXED

 MPI_TYPE_INDEXED

 MPI_TYPE_STRUCT

MPI_ADDRESS

58 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ALLGATHER, MPI_Allgather

Purpose

Gathers individual messages from each task in comm and distributes the resulting

message to each task.

C synopsis

#include <mpi.h>

int MPI_Allgather(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Allgather(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype, void* recvbuf,

 int recvcount, const MPI::Datatype& recvtype)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ALLGATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,

 INTEGER COMM,INTEGER IERROR)

Description

MPI_ALLGATHER is similar to MPI_GATHER except that all tasks receive the result

instead of just the root.

The block of data sent from task j is received by every task and placed in the jth

block of the buffer recvbuf.

The type signature associated with sendcount, sendtype at a task must be equal to

the type signature associated with recvcount, recvtype at any other task.

The ″in place″ option for intra-communicators is specified by passing the value

MPI_IN_PLACE to sendbuf at all tasks. The sendcount and sendtype arguments

are ignored. The input data of each task is assumed to be in the area where that

task would receive its own contribution to the receive buffer. Specifically, the

outcome of a call to MPI_ALLGATHER in the ″in place″ case is as if all tasks

issued n calls to:

MPI_GATHER(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, recvbuf, recvcount, recvtype,

 root, comm)

for: root = 0 to n-1.

If comm is an inter-communicator, each task in group A contributes a data item.

These items are concatenated and the result is stored at each task in group B.

Conversely, the concatenation of the contributions of the tasks in group B is stored

at each task in group A. The send buffer arguments in group A must be consistent

with the receive buffer arguments in group B, and vice versa.

MPI_IN_PLACE is not supported for inter-communicators.

MPI_ALLGATHER

Chapter 3. MPI subroutines and functions 59

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements in the send buffer (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements received from any task (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Invalid communicator

Invalid counts

count < 0

Invalid datatypes

Type not committed

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message length

Related information

 MPE_IALLGATHER

 MPI_ALLGATHER

 MPI_GATHER

MPI_ALLGATHER

60 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ALLGATHERV, MPI_Allgatherv

Purpose

Collects individual messages from each task in comm and distributes the resulting

message to all tasks. Messages can have different sizes and displacements.

C synopsis

#include <mpi.h>

int MPI_Allgatherv(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int *recvcounts,int *displs,MPI_Datatype recvtype,

 MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Allgatherv(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype, void* recvbuf,

 const int recvcounts[], const int displs[],

 const MPI::Datatype& recvtype) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ALLGATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),

 INTEGER RECVTYPE,INTEGER COMM,INTEGER IERROR)

Description

This subroutine collects individual messages from each task in comm and

distributes the resulting message to all tasks. Messages can have different sizes

and displacements.

The block of data sent from task j is recvcounts[j] elements long, and is received by

every task and placed in recvbuf at offset displs[j].

The type signature associated with sendcount, sendtype at task j must be equal to

the type signature of recvcounts[j], recvtype at any other task.

The ″in place″ option for intra-communicators is specified by passing the value

MPI_IN_PLACE to sendbuf at all tasks. The sendcount and sendtype arguments

are ignored. The input data of each task is assumed to be in the area where that

task would receive its own contribution to the receive buffer. Specifically, the

outcome of a call to MPI_ALLGATHERV in the ″in place″ case is as if all tasks

issued n calls to:

MPI_GATHERV(MPI_IN_PLACE, 0, MPI_DATATYPE_NULL, recvbuf, recvcount, recvtype,

 root, comm)

for: root = 0 to n- 1.

If comm is an inter-communicator, each task in group A contributes a data item.

These items are concatenated and the result is stored at each task in group B.

Conversely, the concatenation of the contributions of the tasks in group B is stored

at each task in group A. The send buffer arguments in group A must be consistent

with the receive buffer arguments in group B, and vice versa.

MPI_IN_PLACE is not supported for inter-communicators.

MPI_ALLGATHERV

Chapter 3. MPI subroutines and functions 61

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements in the send buffer (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcounts

An integer array (of length groupsize) that contains the number of elements

received from each task (IN)

displs

An integer array (of length groupsize). Entry i specifies the displacement

(relative to recvbuf) at which to place the incoming data from task i (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Invalid communicator

Invalid counts

count < 0

Invalid datatypes

Type not committed

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

None

Related information

 MPE_IALLGATHERV

 MPI_ALLGATHER

MPI_ALLGATHERV

62 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ALLOC_MEM, MPI_Alloc_mem

Purpose

Allocates storage and returns a pointer to it.

C synopsis

#include <mpi.h>

int MPI_Alloc_mem (MPI_Aint size, MPI_Info info, void *baseptr);

C++ synopsis

#include mpi.h

void* MPI::Alloc_mem(MPI::Aint size, const MPI::Info& info);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ALLOC_MEM(INTEGER SIZE, INTEGER INFO, INTEGER BASEPTR, INTEGER IERROR)

Description

This subroutine allocates at least size bytes of storage and returns a pointer to it in

the baseptr argument. The block of allocated storage is aligned so that it may be

used for any type of data.

The info argument may be used in some implementations to provide directives that

control the desired location of the allocated memory. Such a directive does not

affect the semantics of the call. Valid info values are implementation-dependent. PE

MPI does not recognize any hints for MPI_ALLOC_MEM. A null directive value of

info = MPI_INFO_NULL is always valid.

Parameters

size

The size of the memory segment in bytes (nonnegative integer) (IN)

info

The Info argument (handle) (IN)

baseptr

The pointer to the beginning of the memory segment allocated (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

If the requested amount of memory is not available, the error handler associated

with MPI_COMM_WORLD is invoked. By default, this is

MPI_ERRORS_ARE_FATAL.

Errors

Fatal errors:

Out of memory (MPI_ERR_NO_MEM)

Invalid info (MPI_ERR_INFO)

MPI not initialized (MPI_ERR_OTHER)

MPI_ALLOC_MEM

Chapter 3. MPI subroutines and functions 63

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_FREE_MEM

 MPI_WIN_CREATE

MPI_ALLOC_MEM

64 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ALLREDUCE, MPI_Allreduce

Purpose

Applies a reduction operation to the vector sendbuf over the set of tasks specified

by comm and places the result in recvbuf on all of the tasks in comm.

C synopsis

#include <mpi.h>

int MPI_Allreduce(void* sendbuf,void* recvbuf,int count,

 MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Allreduce(const void* sendbuf, void* recvbuf, int count,

 const MPI::Datatype& datatype, const MPI::Op& op)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ALLREDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

 INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER IERROR)

Description

This subroutine applies a reduction operation to the vector sendbuf over the set of

tasks specified by comm and places the result in recvbuf on all of the tasks.

This subroutine is similar to MPI_REDUCE except the result is returned to the

receive buffer of all the group members.

The ″in place″ option for intra-communicators is specified by passing the value

MPI_IN_PLACE to the argument sendbuf at the root. In this case, the input data is

taken at each task from the receive buffer, where it will be replaced by the output

data.

If comm is an inter-communicator, the result of the reduction of the data provided by

tasks in group A is stored at each task in group B, and vice versa. Both groups

should provide the same count value.

MPI_IN_PLACE is not supported for inter-communicators.

The parameter op may be a predefined reduction operation or a user-defined

function, created using MPI_OP_CREATE. This is a list of predefined reduction

operations:

Operation Definition

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_BXOR Bitwise XOR

MPI_LAND Logical AND

MPI_LOR Logical OR

MPI_LXOR Logical XOR

MPI_ALLREDUCE

Chapter 3. MPI subroutines and functions 65

|
|
|

||

||

||

||

||

||

||

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_PROD Product

MPI_SUM Sum

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

recvbuf

The starting address of the receive buffer (choice) (OUT)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of elements in the send buffer (handle) (IN)

op The reduction operation (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See IBM Parallel Environment: MPI Programming Guide for information about

reduction functions.

The MPI standard urges MPI implementations to use the same evaluation order for

reductions every time, even if this negatively affects performance. PE MPI adjusts

its reduce algorithms for the optimal performance on a given task distribution. The

MPI standard suggests, but does not mandate, this sacrifice of performance. PE

MPI maintains a balance between performance and the MPI standard's

recommendation. PE MPI does not promise that any two runs with the same tack

count will give the same answer, in the least significant bits, for floating point

reductions. Changes to evaluation order may produce different rounding effects.

However, PE MPI does promise that two calls to MPI_REDUCE (or

MPI_ALLREDUCE) on the same communicator with the same inputs, or two runs

that use the same task count and the same distribution across nodes, will always

give identical results.

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

MPI_ALLREDUCE

66 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

||

||

||

||

||

||

Errors

Fatal errors:

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent message length

Related information

 MPE_IALLREDUCE

 MPI_OP_CREATE

 MPI_REDUCE

 MPI_REDUCE_SCATTER

MPI_ALLREDUCE

Chapter 3. MPI subroutines and functions 67

MPI_ALLTOALL, MPI_Alltoall

Purpose

Sends a distinct message from each task to every task.

C synopsis

#include <mpi.h>

int MPI_Alltoall(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,

 MPI_Comm comm):

C++ synopsis

#include mpi.h

void MPI::Comm::Alltoall(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype, void* recvbuf,

 int recvcount, const MPI::Datatype& recvtype)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ALLTOALL(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,

 INTEGER COMM,INTEGER IERROR

Description

MPI_ALLTOALL sends a distinct message from each task to every task.

The jth block of data sent from task i is received by task j and placed in the ith

block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a task must be equal to

the type signature associated with recvcount, recvtype at any other task. This

means the amount of data sent must be equal to the amount of data received, pair

wise between every pair of tasks. The type maps can be different.

All arguments on all tasks are significant.

MPI_ALLTOALL does not support MPI_IN_PLACE on either type of communicator.

If comm is an inter-communicator, the outcome is as if each task in group A sends

a message to each task in group B, and vice versa. The jth send buffer of task i in

group A should be consistent with the ith receive buffer of task j in group B, and

vice versa.

When MPI_ALLTOALL is run on an inter-communicator, the number of data items

sent from tasks in group A to tasks in group B does not need to be equal to the

number of items sent in the reverse direction. In particular, you can have

unidirectional communication by specifying sendcount = 0 in the reverse direction.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPI_ALLTOALL

68 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements sent to each task (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements received from any task (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Unequal lengths

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid communicator

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent message lengths

Related information

 MPE_IALLTOALL

 MPI_ALLTOALLV

MPI_ALLTOALL

Chapter 3. MPI subroutines and functions 69

MPI_ALLTOALLV, MPI_Alltoallv

Purpose

Sends a distinct message from each task to every task. Messages can have

different sizes and displacements.

C synopsis

#include <mpi.h>

int MPI_Alltoallv(void* sendbuf,int *sendcounts,int *sdispls,

 MPI_Datatype sendtype,void* recvbuf,int *recvcounts,int *rdispls,

 MPI_Datatype recvtype,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Alltoallv(const void* sendbuf, const int sendcounts[],

 const int sdispls[], const MPI::Datatype& sendtype,

 void* recvbuf, const int recvcounts[],

 const int rdispls[], const MPI::Datatype& recvtype)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ALLTOALLV(CHOICE SENDBUF,INTEGER SENDCOUNTS(*),

 INTEGER SDISPLS(*),INTEGER SENDTYPE,CHOICE RECVBUF,

 INTEGER RECVCOUNTS(*),INTEGER RDISPLS(*),INTEGER RECVTYPE,

 INTEGER COMM,INTEGER IERROR)

Description

MPI_ALLTOALLV sends a distinct message from each task to every task. Messages

can have different sizes and displacements.

This subroutine is similar to MPI_ALLTOALL with the following differences.

MPI_ALLTOALLV allows you the flexibility to specify the location of the data for the

send with sdispls and the location of where the data will be placed on the receive

with rdispls.

The block of data sent from task i is sendcounts[j] elements long, and is received

by task j and placed in recvbuf at offset rdispls[i]. These blocks do not have to be

the same size.

The type signature associated with sendcount[j], sendtype at task i must be equal to

the type signature associated with recvcounts[i], recvtype at task j. This means the

amount of data sent must be equal to the amount of data received, pair wise

between every pair of tasks. Distinct type maps between sender and receiver are

allowed.

All arguments on all tasks are significant.

MPI_ALLTOALLV does not support MPI_IN_PLACE on either type of communicator.

If comm is an inter-communicator, the outcome is as if each task in group A sends

a message to each task in group B, and vice versa. The jth send buffer of task i in

group A should be consistent with the ith receive buffer of task j in group B, and

vice versa.

MPI_ALLTOALLV

70 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcounts

An integer array (of length groupsize) specifying the number of elements to

send to each task (IN)

sdispls

An integer array (of length groupsize). Entry j specifies the displacement relative

to sendbuf from which to take the outgoing data destined for task j. (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcounts

An integer array (of length groupsize) specifying the number of elements to be

received from each task (IN)

rdispls

An integer array (of length groupsize). Entry i specifies the displacement relative

to recvbuf at which to place the incoming data from task i. (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid communicator

A send and receive have unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Related information

 MPE_IALLTOALLV

 MPI_ALLTOALL

MPI_ALLTOALLV

Chapter 3. MPI subroutines and functions 71

MPI_ALLTOALLW, MPI_Alltoallw

Purpose

Sends a distinct message from each task to every task. Messages can have

different data types, sizes, and displacements.

C synopsis

#include <mpi.h>

int MPI_Alltoallw(void* sendbuf, int sendcounts[], int sdispls[],

 MPI_Datatype sendtypes[], void *recvbuf, int recvcounts[],

 int rdispls[], MPI_Datatype recvtypes[], MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Alltoallw(const void *sendbuf, const int sendcounts[],

 const int sdispls[], const MPI::Datatype sendtypes[],

 void *recvbuf, const int recvcounts[], const int rdispls[],

 const MPI::Datatype recvtypes[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ALLTOALLW(CHOICE SENDBUF(*), INTEGER SENDCOUNTS(*), INTEGER SDISPLS(*),

 INTEGER SENDTYPES(*), CHOICE RECVBUF, INTEGER RECVCOUNTS(*),

 INTEGER RDISPLS(*), INTEGER RECVTYPES(*), INTEGER COMM, INTEGER IERROR)

Description

This subroutine is an extension of MPI_ALLTOALLV. It allows separate specification

of count, displacement and data type. In addition, to allow maximum flexibility, the

displacement of blocks within the send and receive buffers is specified in bytes.

The jth block sent from task i is received by task j and is placed in the ith block of

recvbuf. These blocks need not all have the same size.

The type signature associated with sendcounts[j], sendtypes[j] at task i must be

equal to the type signature associated with recvcounts[i], recvtypes[i] at task j. This

means the amount of data sent must be equal to the amount of data received, pair

wise between every pair of tasks. Distinct type maps between sender and receiver

are allowed.

All arguments on all tasks are significant.

MPI_ALLTOALLW does not support MPI_IN_PLACE on either type of

communicator.

If comm is an inter-communicator, the outcome is as if each task in group A sends

a message to each task in group B, and vice versa. The jth send buffer of task i in

group A should be consistent with the ith receive buffer of task j in group B, and

vice versa.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

MPI_ALLTOALLW

72 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcounts

An integer array (of length groupsize) specifying the number of elements to

send to each task (IN)

sdispls

An integer array (of length groupsize). Entry j specifies the displacement in

bytes (relative to sendbuf) from which to take the outgoing data destined for

task j. (IN)

sendtypes

The array of data types (of length groupsize). Entry j specifies the type of data

to send to task j. (handle) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcounts

An integer array (of length groupsize) specifying the number of elements to be

received from each task (IN)

rdispls

An integer array (of length groupsize). Entry i specifies the displacement in

bytes (relative to recvbuf) at which to place the incoming data from task i. (IN)

recvtypes

The array of data types (of length groupsize). Entry i specifies the type of data

received from task i. (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In the bindings for this subroutine, the send displacement and receive

displacements are arrays of integers. This may limit the usability of this subroutine

in certain 64-bit applications. It is possible that the MPI Forum will define a

replacement for MPI_ALLTOALLW and deprecate this binding. The replacement

subroutine will use arrays of address_size integers. The MPI_ALLTOALLW

subroutine with the present binding will remain available.

Errors

Fatal errors:

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid communicator

A send and receive have unequal message lengths

Invalid use of MPI_IN_PLACE

MPI_ALLTOALLW

Chapter 3. MPI subroutines and functions 73

MPI not initialized

MPI already finalized

Related information

 MPI_ALLTOALLV

MPI_ALLTOALLW

74 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ATTR_DELETE, MPI_Attr_delete

Purpose

Removes an attribute value from a communicator.

C synopsis

#include <mpi.h>

int MPI_Attr_delete(MPI_Comm comm,int keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ATTR_DELETE(INTEGER COMM,INTEGER KEYVAL,INTEGER IERROR)

Description

This subroutine deletes an attribute from cache by key and invokes the attribute

delete function delete_fn specified when the keyval is created.

Parameters

comm

The communicator that the attribute is attached (handle) (IN)

keyval

The key value of the deleted attribute (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_DELETE_ATTR supersedes MPI_ATTR_DELETE.

MPI_ATTR_DELETE does not inter-operate with MPI_COMM_DELETE_ATTR. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors

A delete_fn did not return MPI_SUCCESS

Invalid communicator

Invalid keyval

keyval is undefined

Invalid keyval

keyval is predefined

MPI not initialized

MPI already finalized

Related information

 MPI_KEYVAL_CREATE

MPI_ATTR_DELETE

Chapter 3. MPI subroutines and functions 75

MPI_ATTR_GET, MPI_Attr_get

Purpose

Retrieves an attribute value from a communicator.

C synopsis

#include <mpi.h>

int MPI_Attr_get(MPI_Comm comm,int keyval,void *attribute_val,

 int *flag);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ATTR_GET(INTEGER COMM,INTEGER KEYVAL,INTEGER ATTRIBUTE_VAL,

 LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine retrieves an attribute value by key. If there is no key with value

keyval, the call is erroneous. However, the call is valid if there is a key value keyval,

but no attribute is attached on comm for that key. In this case, the call returns flag =

false.

Parameters

comm

The communicator to which attribute is attached (handle) (IN)

keyval

The key value (integer) (IN)

attribute_val

The attribute value unless flag = false (OUT)

flag

Set to true if an attribute value was extracted and false if no attribute is

associated with the key. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_GET_ATTR supersedes MPI_ATTR_GET.

MPI_ATTR_GET does not inter-operate with MPI_COMM_GET_ATTR. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_ATTR_GET and MPI_ATTR_PUT involves saving a

single word of information in the communicator. The languages C and FORTRAN

have different approaches to using this capability:

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_ATTR_PUT, you allocate some storage for the

attribute structure and then call MPI_ATTR_PUT to record the address of this

MPI_ATTR_GET

76 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

structure. You must make sure that the structure remains intact as long as it may

be useful. As the programmer, you will also declare a variable of type “pointer to

attribute structure” and pass the address of this variable when calling

MPI_ATTR_GET. Both MPI_ATTR_PUT and MPI_ATTR_GET take a void*

parameter, but this does not imply that the same parameter is passed to either

one.

In FORTRAN:

MPI_ATTR_PUT records an INTEGER*4 and MPI_ATTR_GET returns the

INTEGER*4. As the programmer, you can choose to encode all attribute

information in this integer or maintain some kind of database in which the integer

can index. Either of these approaches will port to other MPI implementations.

 Many of the FORTRAN compilers include an additional feature that allows some

of the same functions a C programmer would use. These compilers support the

POINTER type, often referred to as a Cray pointer. XL FORTRAN is one of the

compilers that supports the POINTER type. For more information, see IBM XL

FORTRAN Compiler for AIX Reference

Errors

Invalid communicator

Invalid keyval

keyval is undefined.

MPI not initialized

MPI already finalized

Related information

 MPI_ATTR_PUT

MPI_ATTR_GET

Chapter 3. MPI subroutines and functions 77

MPI_ATTR_PUT, MPI_Attr_put

Purpose

Stores an attribute value in a communicator.

C synopsis

#include <mpi.h>

int MPI_Attr_put(MPI_Comm comm,int keyval,void* attribute_val);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ATTR_PUT(INTEGER COMM,INTEGER KEYVAL,INTEGER ATTRIBUTE_VAL,

 INTEGER IERROR)

Description

This subroutine stores the attribute value for retrieval by MPI_ATTR_GET. Any

previous value is deleted with the attribute delete_fn being called and the new

value is stored. If there is no key with value keyval, the call is erroneous.

Parameters

comm

The communicator to which attribute will be attached (handle) (IN)

keyval

The key value as returned by MPI_KEYVAL_CREATE (integer) (IN)

attribute_val

The attribute value (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_SET_ATTR supersedes MPI_ATTR_PUT.

MPI_ATTR_PUT does not inter-operate with MPI_COMM_SET_ATTR. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_ATTR_PUT and MPI_ATTR_GET involves saving a

single word of information in the communicator. The languages C and FORTRAN

have different approaches to using this capability:

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_ATTR_PUT, you allocate some storage for the

attribute structure and then call MPI_ATTR_PUT to record the address of this

structure. You must make sure that the structure remains intact as long as it may

be useful. As the programmer, you will also declare a variable of type “pointer to

attribute structure” and pass the address of this variable when calling

MPI_ATTR_PUT

78 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ATTR_GET. Both MPI_ATTR_PUT and MPI_ATTR_GET take a void*

parameter, but this does not imply that the same parameter is passed to either

one.

In FORTRAN:

MPI_ATTR_PUT records an INTEGER*4 and MPI_ATTR_GET returns the

INTEGER*4. As the programmer, you can choose to encode all attribute

information in this integer or maintain some kind of database in which the integer

can index. Either of these approaches will port to other MPI implementations.

 Many of the FORTRAN compilers include an additional feature that allows some

of the same functions a C programmer would use. These compilers support the

POINTER type, often referred to as a Cray pointer. XL FORTRAN is one of the

compilers that supports the POINTER type. For more information, see IBM XL

FORTRAN Compiler for AIX Reference

Errors

A delete_fn did not return MPI_SUCCESS

Invalid communicator

Invalid keyval

keyval is undefined.

Predefined keyval

You cannot modify predefined attributes.

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_COPY_ATTR_FUNCTION

 MPI_COMM_CREATE_KEYVAL

 MPI_COMM_DELETE_ATTR

 MPI_COMM_DELETE_ATTR_FUNCTION

 MPI_COMM_GET_ATTR

MPI_ATTR_PUT

Chapter 3. MPI subroutines and functions 79

MPI_BARRIER, MPI_Barrier

Purpose

Blocks each task until all tasks have called it.

C synopsis

#include <mpi.h>

int MPI_Barrier(MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Barrier() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_BARRIER(INTEGER COMM,INTEGER IERROR)

Description

This subroutine blocks until all tasks have called it. Tasks cannot exit the operation

until all group members have entered.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

comm

A communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

comm can be an inter-communicator or an intra-communicator. If comm is an

inter-communicator, the barrier is performed across all tasks in the

inter-communicator. In this case, all tasks in the local group of the

inter-communicator can exit the barrier when all of the tasks in the remote group

have entered the barrier.

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid communicator

MPI not initialized

MPI already finalized

MPI_BARRIER

80 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPE_IBARRIER

MPI_BARRIER

Chapter 3. MPI subroutines and functions 81

MPI_BCAST, MPI_Bcast

Purpose

Broadcasts a message from root to all tasks in comm.

C synopsis

#include <mpi.h>

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype,

 int root, MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Bcast(void* buffer, int count, const MPI::Datatype& datatype,

 int root) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_BCAST(CHOICE BUFFER,INTEGER COUNT,INTEGER DATATYPE,INTEGER ROOT,

 INTEGER COMM,INTEGER IERROR)

Description

This subroutine broadcasts a message from root to all tasks in comm. The contents

of root’s communication buffer are copied to all tasks on return.

The type signature of count, datatype on any task must be equal to the type

signature of count, datatype at the root. This means the amount of data sent must

be equal to the amount of data received, pair wise between each task and the root.

Distinct type maps between sender and receiver are allowed.

If comm is an inter-communicator, the call involves all tasks in the

inter-communicator, but with one group (group A) defining the root task. All tasks in

the other group (group B) pass the same value in root, which is the rank of the root

in group A. The root passes the value MPI_ROOT in root. All other tasks in group A

pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all

tasks in group B. The receive buffer arguments of the tasks in group B must be

consistent with the send buffer argument of the root.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

buffer

The starting address of the buffer (choice) (INOUT)

count

The number of elements in the buffer (integer) (IN)

datatype

The data type of the buffer elements (handle) (IN)

root

The rank of the root task (integer) (IN)

MPI_BCAST

82 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid communicator

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid root

 For an intra-communicator: root < 0 or root >= groupsize

 For an inter-communicator: root < 0 and is neither MPI_ROOT nor

MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message length

Related information

 MPE_IBCAST

MPI_BCAST

Chapter 3. MPI subroutines and functions 83

MPI_BSEND, MPI_Bsend

Purpose

Performs a blocking buffered mode send operation.

C synopsis

#include <mpi.h>

int MPI_Bsend(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Bsend(const void* buf, int count, const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_BSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER IERROR)

Description

This subroutine is a blocking buffered mode send operation. It is a local operation.

It does not depend on the occurrence of a matching receive in order to complete. If

a send operation is started and no matching receive is posted, the outgoing

message is buffered to allow the send call to complete.

Return from an MPI_BSEND does not guarantee the message was sent. It may

remain in the buffer until a matching receive is posted. MPI_BUFFER_DETACH will

block until all messages are received.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of destination (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Make sure you have enough buffer space available. An error occurs if the message

must be buffered and there is there is not enough buffer space. The amount of

MPI_BSEND

84 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

buffer space needed to be safe depends on the expected peak of pending

messages. The sum of the sizes of all of the pending messages at that point plus

(MPI_BSEND_OVERHEAD*number_of_messages) should be sufficient.

Avoid using MPI_BSEND if possible. It adds overhead because it requires an extra

memory-to-memory copy of the outgoing data. If MPI_BSEND is used, the

associated receive operations may perform better with MPI_CSS_INTERRUPT

enabled.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

Insufficient buffer space

MPI not initialized

MPI already finalized

Related information

 MPI_BUFFER_ATTACH

 MPI_BUFFER_DETACH

 MPI_IBSEND

 MPI_SEND

MPI_BSEND

Chapter 3. MPI subroutines and functions 85

MPI_BSEND_INIT, MPI_Bsend_init

Purpose

Creates a persistent buffered mode send request.

C synopsis

#include <mpi.h>

int MPI_Bsend_init(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Prequest MPI::Comm::Bsend_init(const void* buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_BSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER DEST,INTEGER TAG,INTEGER COMM,INTEGER REQUEST,

 INTEGER IERROR)

Description

This subroutine creates a persistent communication request for a buffered mode

send operation. MPI_START or MPI_STARTALL must be called to activate the

send.

Because it is the MPI_START that initiates communication, any error related to

insufficient buffer space occurs at the MPI_START.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements to be sent (integer) (IN)

datatype

The type of each element (handle) (IN)

dest

The rank of the destination task (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_BSEND_INIT

86 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Notes

Make sure you have enough buffer space available. An error occurs if the message

must be buffered and there is there is not enough buffer space. The amount of

buffer space needed to be safe depends on the expected peak of pending

messages. The sum of the sizes of all of the pending messages at that point plus

(MPI_BSEND_INIT_OVERHEAD*number_of_messages) should be sufficient.

Avoid using MPI_BSEND_INIT if possible. It adds overhead because it requires an

extra memory-to-memory copy of the outgoing data. If MPI_BSEND_INIT is used,

the associated receive operations may perform better with MPI_CSS_INTERRUPT

enabled.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_IBSEND

 MPI_START

MPI_BSEND_INIT

Chapter 3. MPI subroutines and functions 87

MPI_BUFFER_ATTACH, MPI_Buffer_attach

Purpose

Provides MPI with a buffer to use for buffering messages sent with MPI_BSEND

and MPI_IBSEND.

C synopsis

#include <mpi.h>

int MPI_Buffer_attach(void* buffer,int size);

C++ synopsis

#include mpi.h

void MPI::Attach_buffer(void* buffer, int size);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_BUFFER_ATTACH(CHOICE BUFFER,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine provides MPI a buffer in the user’s memory which is used for

buffering outgoing messages. This buffer is used only by messages sent in buffered

mode, and only one buffer is attached to a task at any time.

Parameters

buffer

The initial buffer address (choice) (IN)

size

The buffer size in bytes (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI uses part of the buffer space to store information about the buffered messages.

The number of bytes required by MPI for each buffered message is given by

MPI_BSEND_OVERHEAD.

If a buffer is already attached, it must be detached by MPI_BUFFER_DETACH

before a new buffer can be attached.

Errors

Invalid size

size < 0

Buffer is already attached

MPI not initialized

MPI already finalized

MPI_BUFFER_ATTACH

88 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_BSEND

 MPI_BUFFER_DETACH

 MPI_IBSEND

MPI_BUFFER_ATTACH

Chapter 3. MPI subroutines and functions 89

MPI_BUFFER_DETACH, MPI_Buffer_detach

Purpose

Detaches the current buffer.

C synopsis

#include <mpi.h>

int MPI_Buffer_detach(void* buffer,int *size);

C++ synopsis

#include mpi.h

int MPI::Detach_buffer(void*& buffer);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_BUFFER_DETACH(CHOICE BUFFER,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine detaches the current buffer. Blocking occurs until all messages in

the active buffer are transmitted. Once this function returns, you can reuse or

deallocate the space taken by the buffer. There is an implicit

MPI_BUFFER_DETACH inside MPI_FINALIZE. Because a buffer detach can block,

the implicit detach creates some risk that an incorrect program will hang in

MPI_FINALIZE.

If there is no active buffer, MPI acts as if a buffer of size 0 is associated with the

task.

Parameters

buffer

The initial buffer address (choice) (OUT)

size

The buffer size in bytes (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

It is important to detach an attached buffer before it is deallocated. Otherwise,

unpredictable errors are likely.

In FORTRAN 77, the buffer argument for MPI_BUFFER_DETACH cannot return a

useful value because FORTRAN 77 does not support pointers. If a fully portable

MPI program written in FORTRAN calls MPI_BUFFER_DETACH, it either passes

the name of the original buffer or a throwaway temporary buffer as the buffer

argument.

If a buffer was attached, PE MPI returns the address of the freed buffer in the first

word of the buffer argument. If the size being returned is 0 to 4 bytes,

MPI_BUFFER_DETACH will not modify the buffer argument. This implementation is

harmless for a program that uses either the original buffer or a throwaway

MPI_BUFFER_DETACH

90 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

temporary buffer of at least word size as buffer. It also allows the programmer who

wants to use an XL FORTRAN POINTER as the buffer argument to do so. Using

the POINTER type will affect portability.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_BSEND

 MPI_BUFFER_ATTACH

 MPI_IBSEND

MPI_BUFFER_DETACH

Chapter 3. MPI subroutines and functions 91

MPI_CANCEL, MPI_Cancel

Purpose

Marks a nonblocking request for cancellation.

C synopsis

#include <mpi.h>

int MPI_Cancel(MPI_Request *request);

C++ synopsis

#include mpi.h

void MPI::Request::Cancel(void) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CANCEL(INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine marks a nonblocking request for cancellation. The cancel call is

local. It returns immediately; it can return even before the communication is actually

cancelled. It is necessary to complete an operation marked for cancellation by using

a call to MPI_WAIT or MPI_TEST (or any other wait or test call).

You can use MPI_CANCEL to cancel a persistent request in the same way it is

used for nonpersistent requests. A successful cancellation cancels the active

communication, but not the request itself. After the call to MPI_CANCEL and the

subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can

be activated for a new communication. It is erroneous to cancel an inactive

persistent request.

The successful cancellation of a buffered send frees the buffer space occupied by

the pending message.

Either the cancellation succeeds or the communications operation succeeds, but not

both. If a send is marked for cancellation, either the send completes normally, in

which case the message sent was received at the destination task, or the send is

successfully cancelled, in which case no part of the message was received at the

destination. Then, any matching receive has to be satisfied by another send. If a

receive is marked for cancellation, then the receive completes normally or the

receive is successfully cancelled, in which case no part of the receive buffer is

altered. Then, any matching send has to be satisfied by another receive.

If the operation has been cancelled successfully, information to that effect is

returned in the status argument of the operation that completes the communication,

and may be retrieved by a call to MPI_TEST_CANCELLED.

Parameters

request

A communication request (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_CANCEL

92 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|
|
|
|
|
|

Notes

Nonblocking collective communication requests cannot be cancelled. MPI_CANCEL

may be called on nonblocking file operation requests. The eventual call to

MPI_TEST_CANCELLED will show that the cancellation did not succeed.

Errors

Invalid request

CCL request

Cancel inactive persistent request

MPI Grequest cancel function returned an error

MPI not initialized

MPI already finalized

Related information

 MPI_TEST_CANCELLED

 MPI_WAIT

MPI_CANCEL

Chapter 3. MPI subroutines and functions 93

MPI_CART_COORDS, MPI_Cart_coords

Purpose

Translates task rank in a communicator into Cartesian task coordinates.

C synopsis

#include <mpi.h>

MPI_Cart_coords(MPI_Comm comm,int rank,int maxdims,int *coords);

C++ synopsis

#include mpi.h

void MPI::Cartcomm::Get_coords(int rank, int maxdims,

 int coords[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CART_COORDS(INTEGER COMM,INTEGER RANK,INTEGER MAXDIMS,

 INTEGER COORDS(*),INTEGER IERROR)

Description

This subroutine translates task rank in a communicator into task coordinates.

Parameters

comm

A communicator with Cartesian topology (handle) (IN)

rank

The rank of a task within group comm (integer) (IN)

maxdims

The length of array coords in the calling program (integer) (IN)

coords

An integer array specifying the Cartesian coordinates of a task. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Task coordinates in a Cartesian structure begin their numbering at 0. Row-major

numbering is always used for the tasks in a Cartesian structure.

Errors

MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology

Type must be Cartesian.

Invalid rank

rank < 0 or rank > = groupsize

MPI_CART_COORDS

94 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid array size

maxdims < 0

Related information

 MPI_CART_CREATE

 MPI_CART_RANK

MPI_CART_COORDS

Chapter 3. MPI subroutines and functions 95

MPI_CART_CREATE, MPI_Cart_create

Purpose

Creates a communicator containing topology information.

C synopsis

#include <mpi.h>

int MPI_Cart_create(MPI_Comm comm_old,int ndims,int *dims,

 int *periods,int reorder,MPI_Comm *comm_cart);

C++ synopsis

#include mpi.h

MPI::Cartcomm MPI::Intracomm::Create_cart(int ndims, const int dims[],

 const bool periods[], bool reorder) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CART_CREATE(INTEGER COMM_OLD,INTEGER NDIMS,INTEGER DIMS(*),

 INTEGER PERIODS(*),INTEGER REORDER,INTEGER COMM_CART,INTEGER IERROR)

Description

This subroutine creates a new communicator that contains Cartesian topology

information defined by ndims, dims, periods, and reorder. MPI_CART_CREATE

returns a handle for this new communicator in comm_cart. If there are more tasks

in comm than are required by the grid, some tasks are returned and comm_cart =

MPI_COMM_NULL. comm_old must be an intra-communicator.

Parameters

comm_old

The input communicator (handle) (IN)

ndims

The number of Cartesian dimensions in the grid (integer) (IN)

dims

An integer array of size ndims specifying the number of tasks in each

dimension (IN)

periods

A logical array of size ndims specifying if the grid is periodic or not in each

dimension (IN)

reorder

Set to true, ranking may be reordered. Set to false, rank in comm_cart must be

the same as in comm_old. (logical) (IN)

comm_cart

A communicator with new Cartesian topology (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Early versions of MPI on AIX and most other MPI implementations that are

available today ignore reorder, as the MPI standard allows.

MPI_CART_CREATE

96 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

If you have a program that works with reorder = false and fails with reorder = true,

examine your code for communication on comm_cart using ranks from comm_old.

Errors

MPI not initialized

Conflicting collective operations on communicator

MPI already finalized

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid ndims

ndims < 0 or ndims > groupsize

Invalid dimension

Related information

 MPI_CART_SUB

 MPI_GRAPH_CREATE

MPI_CART_CREATE

Chapter 3. MPI subroutines and functions 97

MPI_CART_GET, MPI_Cart_get

Purpose

Retrieves Cartesian topology information from a communicator.

C synopsis

#include <mpi.h>

MPI_Cart_get(MPI_Comm comm,int maxdims,int *dims,int *periods,int *coords);

C++ synopsis

#include mpi.h

void MPI::Cartcomm::Get_topo(int maxdims, int dims[],

 bool periods[], int coords[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CART_GET(INTEGER COMM,INTEGER MAXDIMS,INTEGER DIMS(*),

 INTEGER PERIODS(*),INTEGER COORDS(*),INTEGER IERROR)

Description

This subroutine retrieves the Cartesian topology information associated with a

communicator in dims, periods and coords.

Parameters

comm

A communicator with Cartesian topology (handle) (IN)

maxdims

The length of dims, periods, and coords in the calling program (integer) (IN)

dims

The number of tasks for each Cartesian dimension (array of integer) (OUT)

periods

A logical array specifying if each Cartesian dimension is periodic or not. (OUT)

coords

The coordinates of the calling task in the Cartesian structure (array of integer)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type

Type must be Cartesian.

Invalid array size

maxdims < 0

MPI_CART_GET

98 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_CART_CREATE

 MPI_CARTDIM_GET

MPI_CART_GET

Chapter 3. MPI subroutines and functions 99

MPI_CART_MAP, MPI_Cart_map

Purpose

Computes placement of tasks on the physical processor.

C synopsis

#include <mpi.h>

MPI_Cart_map(MPI_Comm comm,int ndims,int *dims,int *periods,

 int *newrank);

C++ synopsis

#include mpi.h

int MPI::Cartcomm::Map(int ndims, const int dims[],

 const bool periods[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CART_MAP(INTEGER COMM,INTEGER NDIMS,INTEGER DIMS(*),

 INTEGER PERIODS(*),INTEGER NEWRANK,INTEGER IERROR)

Description

MPI_CART_MAP allows MPI to compute an optimal placement for the calling task

on the physical processor layout by reordering the tasks in comm.

Parameters

comm

The input communicator (handle) (IN)

ndims

The number of dimensions of the Cartesian structure (integer) (IN)

dims

An integer array of size ndims specifying the number of tasks in each

coordinate direction (IN)

periods

A logical array of size ndims specifying the periodicity in each coordinate

direction (IN)

newrank

The reordered rank or MPI_UNDEFINED if the calling task does not belong to

the grid (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The rank determined by MPI_CART_MAP depends on the distribution of task per

node. The value may or may not match rank in MPI_COMM_WORLD.

Errors

MPI not initialized

MPI already finalized

MPI_CART_MAP

100 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid communicator

Invalid communicator type

Communication type must be intra-communicator.

Invalid ndims

ndims < 1 or ndims > groupsize

Invalid dimension

ndims[i] <= 0

Invalid grid size

n< 0 or n > groupsize, where n is the product of dims[i]

MPI_CART_MAP

Chapter 3. MPI subroutines and functions 101

MPI_CART_RANK, MPI_Cart_rank

Purpose

Translates task coordinates into a task rank.

C synopsis

#include <mpi.h>

MPI_Cart_rank(MPI_Comm comm,int *coords,int *rank);

C++ synopsis

#include mpi.h

int MPI::Cartcomm::Get_cart_rank(const int coords[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CART_RANK(INTEGER COMM,INTEGER COORDS(*),INTEGER RANK,

 INTEGER IERROR)

Description

This subroutine translates Cartesian task coordinates into a task rank.

For dimension i with periods(i) = true, if the coordinate coords(i) is out of range,

that is, coords(i) < 0 or coords(i) >= dims(i), it is automatically shifted back to the

interval 0 <= coords(i) < dims(i). Out-of-range coordinates are erroneous for

nonperiodic dimensions.

Parameters

comm

A communicator with Cartesian topology (handle) (IN)

coords

An integer array of size ndims specifying the Cartesian coordinates of a task

(IN)

rank

An integer specifying the rank of specified task (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Task coordinates in a Cartesian structure begin their numbering at 0. Row-major

numbering is always used for the tasks in a Cartesian structure.

Errors

MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type

Type must be Cartesian.

MPI_CART_RANK

102 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid coordinates

Refer to Description above.

Related information

 MPI_CART_COORDS

 MPI_CART_CREATE

MPI_CART_RANK

Chapter 3. MPI subroutines and functions 103

MPI_CART_SHIFT, MPI_Cart_shift

Purpose

Returns shifted source and destination ranks for a task.

C synopsis

#include <mpi.h>

MPI_Cart_shift(MPI_Comm comm,int direction,int disp,

 int *rank_source,int *rank_dest);

C++ synopsis

#include mpi.h

void MPI::Cartcomm::Shift(int direction, int disp, int &rank_source,

 int &rank_dest) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CART_SHIFT(INTEGER COMM,INTEGER DIRECTION,INTEGER DISP,

 INTEGER RANK_SOURCE,INTEGER RANK_DEST,INTEGER IERROR)

Description

This subroutine shifts the local rank along a specified coordinate dimension to

generate source and destination ranks.

rank_source is obtained by subtracting disp from the nth coordinate of the local

task, where n is equal to direction. Similarly, rank_dest is obtained by adding disp to

the nth coordinate. Coordinate dimensions (direction) are numbered starting with 0.

If the dimension specified by direction is nonperiodic, off-end shifts result in the

value MPI_PROC_NULL being returned for rank_source or rank_dest or both.

Parameters

comm

A communicator with Cartesian topology (handle) (IN)

direction

The coordinate dimension of shift (integer) (IN)

disp

The displacement (> 0 = upward shift, < 0 = downward shift) (integer) (IN)

rank_source

The rank of the source task (integer) (OUT)

rank_dest

The rank of the destination task (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In C and FORTRAN, the coordinate is identified by counting from 0. For example,

FORTRAN A(X,Y) or C A[x] [y] both have x as direction 0.

MPI_CART_SHIFT

104 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

MPI not initialized

MPI already finalized

Invalid communicator

Invalid topology type

Type must be Cartesian.

No topology

Related information

 MPI_CART_COORDS

 MPI_CART_CREATE

 MPI_CART_RANK

MPI_CART_SHIFT

Chapter 3. MPI subroutines and functions 105

MPI_CART_SUB, MPI_Cart_sub

Purpose

Partitions a Cartesian communicator into lower-dimensional subgroups.

C synopsis

#include <mpi.h>

MPI_Cart_sub(MPI_Comm comm,int *remain_dims,MPI_Comm *newcomm);

C++ synopsis

#include mpi.h

MPI::Cartcomm MPI::Cartcomm::Sub(const bool remain_dims[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CART_SUB(INTEGER COMM,LOGICAL REMAIN_DIMS(*),INTEGER NEWCOMM,

 INTEGER IERROR)

Description

If a Cartesian topology was created with MPI_CART_CREATE, you can use the

function MPI_CART_SUB:

v to partition the communicator group into subgroups forming lower-dimensional

Cartesian subgrids

v to build a communicator with the associated subgrid Cartesian topology for each

of those subgroups.

This function is closely related to MPI_COMM_SPLIT.

For example, suppose MPI_CART_CREATE (..., comm) defined a 2 × 3 × 4 grid

and remain_dims = (true, false, true). A call to:

MPI_CART_SUB(comm,remain_dims,comm_new),

creates three communicators. Each has eight tasks in a 2 × 4 Cartesian topology. If

remain_dims = (false, false, true), the call to:

MPI_CART_SUB(comm,remain_dims,comm_new),

creates six nonoverlapping communicators, each with four tasks in a

one-dimensional Cartesian topology.

Parameters

comm

A communicator with Cartesian topology (handle) (IN)

remain_dims

The ith entry of remain_dims specifies whether the ith dimension is kept in the

subgrid or is dropped. (logical vector) (IN)

newcomm

The communicator containing the subgrid that includes the calling task (handle)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_CART_SUB

106 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

MPI not initialized

MPI already finalized

Invalid communicator

Invalid topology

Type must be Cartesian.

No topology

Related information

 MPI_CART_CREATE

 MPI_COMM_SPLIT

MPI_CART_SUB

Chapter 3. MPI subroutines and functions 107

MPI_CARTDIM_GET, MPI_Cartdim_get

Purpose

Retrieves the number of Cartesian dimensions from a communicator.

C synopsis

#include <mpi.h>

MPI_Cartdim_get(MPI_Comm comm,int *ndims);

C++ synopsis

#include mpi.h

int MPI::Cartcomm::Get_dim() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_CARTDIM_GET(INTEGER COMM,INTEGER NDIMS,INTEGER IERROR)

Description

This subroutine retrieves the number of dimensions in a Cartesian topology.

Parameters

comm

A communicator with Cartesian topology (handle) (IN)

ndims

An integer specifying the number of dimensions of the Cartesian topology

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid communicator

No topology

Invalid topology type

Type must be Cartesian.

MPI not initialized

MPI already finalized

Related information

 MPI_CART_CREATE

 MPI_CART_GET

MPI_CARTDIM_GET

108 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Comm_c2f

Purpose

Translates a C communicator handle into a FORTRAN handle to the same

communicator.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Comm_c2f(MPI_Comm comm);

Description

This function does not have C++ or FORTRAN bindings. MPI_Comm_c2f translates

a C communicator handle into a FORTRAN handle to the same communicator. This

function maps a null handle into a null handle and a handle that is not valid into a

handle that is not valid. The converted handle is returned as the function’s value.

There is no error detection or return code.

Parameters

comm

A communicator (handle) (IN)

Errors

None.

Related information

 MPI_Comm_f2c

MPI_Comm_c2f

Chapter 3. MPI subroutines and functions 109

MPI_COMM_CALL_ERRHANDLER, MPI_Comm_call_errhandler

Purpose

Calls the error handler assigned to the communicator with the error code supplied.

C synopsis

#include <mpi.h>

int MPI_Comm_call_errhandler (MPI_Comm comm, int errorcode);

C++ synopsis

#include mpi.h

void MPI::Comm::Call_errhandler(int errorcode) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_CALL_ERRHANDLER(INTEGER COMM, INTEGER ERRORCODE, INTEGER IERROR)

Description

This subroutine calls the error handler assigned to the communicator with the error

code supplied.

Parameters

comm

The communicator with the error handler (handle) (IN)

errorcode

The error code (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_CALL_ERRHANDLER returns MPI_SUCCESS in C and C++ and the

same value in IERROR if the error handler was successfully called (assuming the

error handler itself is not fatal).

The default error handler for communicators is MPI_ERRORS_ARE_FATAL. Thus,

calling MPI_COMM_CALL_ERRHANDLER will terminate the job if the default error

handler has not been changed for this communicator or on the parent before the

communicator was created. When a predefined error handler is used on comm, the

error message printed by PE MPI will indicate the error code that is passed in. You

cannot force PE MPI to issue a specific predefined error by passing its error code

to this subroutine.

Error handlers should not be called recursively with

MPI_COMM_CALL_ERRHANDLER. Doing this can create a situation where an

infinite recursion is created. This can occur if MPI_COMM_CALL_ERRHANDLER is

called inside an error handler.

Error codes and classes are associated with a task, so they can be used in any

error handler. An error handler should be prepared to deal with any error code it is

MPI_COMM_CALL_ERRHANDLER

110 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

given. Furthermore, it is good practice to call an error handler only with the

appropriate error codes. For example, communicator errors would normally be sent

to the communicator error handler.

Errors

Invalid communicator

Invalid error code

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_CREATE_ERRHANDLER

 MPI_COMM_GET_ERRHANDLER

 MPI_COMM_SET_ERRHANDLER

 MPI_ERRHANDLER_FREE

MPI_COMM_CALL_ERRHANDLER

Chapter 3. MPI subroutines and functions 111

MPI::Comm::Clone

Purpose

Creates a new communicator that is a duplicate of an existing communicator.

C++ synopsis

#include mpi.h

MPI::Cartcomm& MPI::Cartcomm::Clone() const;

#include mpi.h

MPI::Graphcomm& MPI::Graphcomm::Clone() const;

#include mpi.h

MPI::Intercomm& MPI::Intercomm::Clone() const;

#include mpi.h

MPI::Intracomm& MPI::Intracomm::Clone() const;

Description

This subroutine is a pure virtual function. For the derived communicator classes,

MPI::Comm::Clone() behaves like Dup(), except that it returns a new object by

reference.

Parameters

comm

The communicator (handle) (IN)

newcomm

The copy of comm (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Conflicting collective operations on communicator

A copy_fn did not return MPI_SUCCESS

A delete_fn did not return MPI_SUCCESS

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_DUP

MPI::Comm::Clone

112 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_COMPARE, MPI_Comm_compare

Purpose

Compares the groups and context of two communicators.

C synopsis

#include <mpi.h>

int MPI_Comm_compare(MPI_Comm comm1,MPI_Comm comm2,int *result);

C++ synopsis

#include mpi.h

int MPI::Comm::Compare(const MPI::Comm& comm1, const MPI::Comm& comm2);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_COMPARE(INTEGER COMM1,INTEGER COMM2,INTEGER RESULT,INTEGER IERROR)

Description

This subroutine compares the groups and contexts of two communicators. This is

an explanation of each MPI_COMM_COMPARE defined value:

MPI_IDENT

comm1 and comm2 are handles for the identical object.

MPI_CONGRUENT

The underlying groups are identical in constituents and rank order (both

local and remote groups for intercommunications), but are different in

context.

MPI_SIMILAR

The group members of both communicators are the same, but are different

in rank order (both local and remote groups for intercommunication).

MPI_UNEQUAL

None of the above.

Parameters

comm1

The first communicator (handle) (IN)

comm2

The second communicator (handle) (IN)

result

An integer specifying the result. The defined values are: MPI_IDENT,

MPI_CONGRUENT, MPI_SIMILAR, and MPI_UNEQUAL. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid communicators

MPI not initialized

MPI already finalized

MPI_COMM_COMPARE

Chapter 3. MPI subroutines and functions 113

Related information

 MPI_GROUP_COMPARE

MPI_COMM_COMPARE

114 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_CREATE, MPI_Comm_create

Purpose

Creates a new communicator with a given group.

C synopsis

#include <mpi.h>

int MPI_Comm_create(MPI_Comm comm_in, MPI_Group group, MPI_Comm *comm_out);

C++ synopsis

#include mpi.h

MPI::Intercomm MPI::Intercomm::Create(const MPI::Group& group) const;

#include mpi.h

MPI::Intracomm MPI::Intracomm::Create(const MPI::Group& group) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_CREATE(INTEGER COMM_IN, INTEGER GROUP, INTEGER COMM_OUT,

 INTEGER IERROR)

Description

MPI_COMM_CREATE is a collective operation that is invoked by all tasks in the

group associated with comm_in. This subroutine creates a new communicator

comm_out with the communication group defined by group and a new context.

Cached information is not propagated from comm_in to comm_out.

For tasks that are not in group, MPI_COMM_NULL is returned. The call is

erroneous if group is not a subset of the group associated with comm_in. The call is

invoked by all tasks in comm_in even if they do not belong to the new group.

If comm_in is an inter-communicator, the output communicator is also an

inter-communicator where the local group consists only of those tasks contained in

group. The group argument should contain only those tasks in the local group of the

input inter-communicator that are to be a part of comm_out. If either group does not

specify at least one task in the local group of the inter-communicator, or if the

calling task is not included in the group, MPI_COMM_NULL is returned.

Parameters

comm_in

The original communicator (handle) (IN)

group

A group of tasks that will be in the new communicator (handle) (IN)

comm_out

The new communicator (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_CREATE provides a way to subset a group of tasks for the purpose of

separate MIMD computation with separate communication space. You can use

MPI_COMM_CREATE

Chapter 3. MPI subroutines and functions 115

comm_out in subsequent calls to MPI_COMM_CREATE or other communicator

constructors to further subdivide a computation into parallel sub-computations.

Errors

Fatal errors:

Conflicting collective operations on communicator

Invalid communicator

Invalid group

group is not a subset of the group associated with comm_in.

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_DUP

 MPI_COMM_SPLIT

MPI_COMM_CREATE

116 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_CREATE_ERRHANDLER, MPI_Comm_create_errhandler

Purpose

Creates an error handler that can be attached to communicators.

C synopsis

#include <mpi.h>

int MPI_Comm_create_errhandler (MPI_Comm_errhandler_fn *function,

 MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

static MPI::Errhandler MPI::Comm::Create_errhandler,

 (MPI::Comm::Errhandler_fn* function);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_CREATE_ERRHANDLER(EXTERNAL FUNCTION, INTEGER ERRHANDLER,

 INTEGER IERROR)

Description

In C, the user subroutine should be a function of type MPI_Comm_errhandler_fn,

which is defined as:

typedef void MPI_Comm_errhandler_fn(MPI_Comm *, int *, ...);

The first argument is the communicator in use, the second is the error code to be

returned.

In C++, the user subroutine should be of the form:

typedef void MPI::Comm::Errhandler_fn(MPI::Comm &, int *, ...);

In FORTRAN, the user subroutine should be of the form:

SUBROUTINE COMM_ERRHANDLER_FN(COMM, ERROR_CODE, ...)

INTEGER COMM, ERROR_CODE

Parameters

function

The user-defined error handling procedure (function) (IN)

errhandler

The MPI error handler (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_CREATE_ERRHANDLER supersedes MPI_ERRHANDLER_CREATE.

The MPI standard specifies a varargs error handler prototype. A correct user error

handler would be coded as:

void my_handler(MPI_Comm *comm, int *errcode, ...){}

MPI_COMM_CREATE_ERRHANDLER

Chapter 3. MPI subroutines and functions 117

PE MPI passes additional arguments to an error handler. The MPI standard allows

this and urges an MPI implementation that does so to document the additional

arguments. These additional arguments will be ignored by fully portable user error

handlers. The extra errhandler arguments can be accessed by using the C varargs

(or stdargs) facility, but programs that do so will not port cleanly to other MPI

implementations that might have different additional arguments.

The effective prototype for an error handler in PE MPI is:

typedef void (MPI_Handler_function)

 (MPI_Comm *comm, int *code, char *routine_name, int *flag,

 MPI_Aint *badval)

The additional arguments are:

routine_name

the name of the MPI routine in which the error occurred

flag true if badval is meaningful, otherwise false

badval

the non-valid integer or long value that triggered the error

The interpretation of badval is context-dependent, so badval is not likely to be

useful to a user error handler function that cannot identify this context. The

routine_name string is more likely to be useful.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Null function not allowed

function cannot be NULL.

Related information

 MPI_COMM_CALL_ERRHANDLER

 MPI_COMM_GET_ERRHANDLER

 MPI_COMM_SET_ERRHANDLER

 MPI_ERRHANDLER_CREATE

 MPI_ERRHANDLER_FREE

MPI_COMM_CREATE_ERRHANDLER

118 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_CREATE_KEYVAL, MPI_Comm_create_keyval

Purpose

Creates a new attribute key for a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_create_keyval (MPI_Comm_copy_attr_function *comm_copy_attr_fn,

 MPI_Comm_delete_attr_function *comm_delete_attr_fn,

 int *comm_keyval, void *extra_state);

C++ synopsis

#include mpi.h

int MPI::Comm::Create_keyval(MPI::Comm::Copy_attr_function* comm_copy_attr_fn,

 MPI::Comm::Delete_attr_function* comm_delete_attr_fn,

 void* extra_state);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_CREATE_KEYVAL(EXTERNAL COMM_COPY_ATTR_FN, EXTERNAL COMM_DELETE_ATTR_FN,

 INTEGER COMM_KEYVAL, INTEGER EXTRA_STATE, INTEGER IERROR)

Description

This subroutine creates a new attribute key for a communicator and returns a

handle to it in the comm_keyval argument. A key is unique in a task and is opaque

to the user. Once created, a key can be used to associate an attribute with a

communicator and access it within the local task.

The argument comm_copy_attr_fn can be specified as

MPI_COMM_NULL_COPY_FN or MPI_COMM_DUP_FN in C, C++, or FORTRAN.

The MPI_COMM_NULL_COPY_FN function returns flag = 0 and MPI_SUCCESS.

MPI_COMM_DUP_FN is a simple copy function that sets flag = 1, returns the value

of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.

The argument comm_delete_attr_fn can be specified as

MPI_COMM_NULL_DELETE_FN in C, C++, or FORTRAN. The

MPI_COMM_NULL_DELETE_FN function, which supersedes

MPI_NULL_DELETE_FN, returns MPI_SUCCESS.

The C callback functions are:

typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm, int comm_keyval,

 void *extra_state, void *attribute_val_in,

 void *attribute_val_out, int *flag);

and

typedef int MPI_Comm_delete_attr_function(MPI_Comm comm, int comm_keyval,

 void *attribute_val, void *extra_state);

The FORTRAN callback functions are:

SUBROUTINE COMM_COPY_ATTR_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,

 ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_COMM_CREATE_KEYVAL

Chapter 3. MPI subroutines and functions 119

and

SUBROUTINE COMM_DELETE_ATTR_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,

 EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The C++ callback functions are:

typedef int MPI::Comm::Copy_attr_function(const MPI::Comm& oldcomm,

int comm_keyval, void* extra_state, void* attribute_val_in,

void* attribute_val_out, bool& flag);

and

typedef int MPI::Comm::Delete_attr_function(MPI::Comm& comm, int comm_keyval,

 void* attribute_val, void* extra_state);

The attribute_val_in parameter is the value of the attribute. The attribute_val_out

parameter is the address of the value, so the function can set a new value. The

attribute_val_out parameter is logically a void**, but it is prototyped as void*, to

avoid the need for complex casting.

Parameters

extra_state

The extra state for callback functions (IN)

comm_copy_attr_fn

The copy callback function for comm_keyval (IN)

comm_delete_attr_fn

The delete callback function for comm_keyval (IN)

comm_keyval

The key value for future access (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_CREATE_KEYVAL supersedes MPI_KEYVAL_CREATE.

MPI_COMM_CREATE_KEYVAL does not inter-operate with

MPI_KEYVAL_CREATE. The FORTRAN bindings for MPI-1 caching functions

presume that an attribute is an INTEGER. The MPI-2 caching bindings use

INTEGER (KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses

64-bit addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_FREE_KEYVAL

 MPI_KEYVAL_CREATE

MPI_COMM_CREATE_KEYVAL

120 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_DELETE_ATTR, MPI_Comm_delete_attr

Purpose

Removes an attribute value from a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_delete_attr (MPI_Comm comm, int comm_keyval);

C++ synopsis

#include mpi.h

void MPI::Comm::Delete_attr(int comm_keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_DELETE_ATTR(INTEGER COMM, INTEGER COMM_KEYVAL, INTEGER IERROR)

Description

This subroutine deletes an attribute from cache by key and invokes the attribute

delete function delete_fn specified when the keyval is created.

Parameters

comm

The communicator from which the attribute is deleted (handle) (INOUT)

comm_keyval

The key value (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_DELETE_ATTR supersedes MPI_ATTR_DELETE.

MPI_COMM_DELETE_ATTR does not inter-operate with MPI_ATTR_DELETE. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information

 MPI_ATTR_DELETE

 MPI_COMM_CREATE_KEYVAL

 MPI_COMM_GET_ATTR

 MPI_COMM_SET_ATTR

MPI_COMM_DELETE_ATTR

Chapter 3. MPI subroutines and functions 121

MPI_COMM_DUP, MPI_Comm_dup

Purpose

Creates a new communicator that is a duplicate of an existing communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_dup(MPI_Comm comm,MPI_Comm *newcomm);

C++ synopsis

#include mpi.h

MPI::Cartcomm MPI::Cartcomm::Dup() const;

#include mpi.h

MPI::Graphcomm MPI::Graphcomm::Dup() const;

#include mpi.h

MPI::Intercomm MPI::Intercomm::Dup() const;

#include mpi.h

MPI::Intracomm MPI::Intracomm::Dup() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_DUP(INTEGER COMM,INTEGER NEWCOMM,INTEGER IERROR)

Description

MPI_COMM_DUP is a collective operation that is invoked by the group associated

with comm. This subroutine duplicates the existing communicator comm with its

associated key values.

For each key value the respective copy callback function determines the attribute

value associated with this key in the new communicator. One action that a copy

callback may take is to delete the attribute from the new communicator. Returns in

newcomm a new communicator with the same group and any copied cached

information, but a new context.

This subroutine applies to both intra-communicators and inter-communicators.

Parameters

comm

The communicator (handle) (IN)

newcomm

The copy of comm (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Use this operation to produce a duplicate communication space that has the same

properties as the original communicator. This includes attributes and topologies.

This subroutine is valid even if there are pending point-to-point communications

involving the communicator comm.

MPI_COMM_DUP

122 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Remember that MPI_COMM_DUP is collective on the input communicator, so it is

erroneous for a thread to attempt to duplicate a communicator that is

simultaneously involved in an MPI_COMM_DUP or any collective on some other

thread.

Errors

Conflicting collective operations on communicator

A copy_fn did not return MPI_SUCCESS.

A delete_fn did not return MPI_SUCCESS.

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI::Comm::Clone

 MPI_KEYVAL_CREATE

MPI_COMM_DUP

Chapter 3. MPI subroutines and functions 123

MPI_Comm_f2c

Purpose

Returns a C handle to a communicator.

C synopsis

#include <mpi.h>

MPI_Comm MPI_Comm_f2c(MPI_Fint comm);

Description

This function does not have C++ or FORTRAN bindings. MPI_Comm_f2c returns a

C handle to a communicator. If comm is a valid FORTRAN handle to a

communicator, MPI_Comm_f2c returns a valid C handle to that same

communicator. If comm is set to the FORTRAN value MPI_COMM_NULL,

MPI_Comm_f2c returns the equivalent null C handle. If comm is not a valid

FORTRAN handle, MPI_Comm_f2c returns a C handle that is not valid. The

converted handle is returned as the function’s value. There is no error detection or

return code.

Parameters

comm

The communicator (handle) (IN)

Errors

None.

Related information

 MPI_Comm_c2f

MPI_Comm_f2c

124 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_FREE, MPI_Comm_free

Purpose

Marks a communicator for deallocation.

C synopsis

#include <mpi.h>

int MPI_Comm_free(MPI_Comm *comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Free(void);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_FREE(INTEGER COMM,INTEGER IERROR)

Description

This collective operation marks either an intra-communicator or an

inter-communicator object for deallocation. MPI_COMM_FREE sets the handle to

MPI_COMM_NULL. Actual deallocation of the communicator object occurs when

active references to it have completed. The delete callback functions for all cached

attributes are called in arbitrary order. The delete functions are called immediately

and not deferred until deallocation.

Parameters

comm

The communicator to be freed (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

A delete_fn did not return MPI_SUCCESS.

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_KEYVAL_CREATE

MPI_COMM_FREE

Chapter 3. MPI subroutines and functions 125

MPI_COMM_FREE_KEYVAL, MPI_Comm_free_keyval

Purpose

Marks a communicator attribute key for deallocation.

C synopsis

#include <mpi.h>

int MPI_Comm_free_keyval (int *comm_keyval);

C++ synopsis

#include mpi.h

void MPI::Comm::Free_keyval(int& comm_keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_FREE_KEYVAL(INTEGER COMM_KEYVAL, INTEGER IERROR)

Description

This subroutine sets keyval to MPI_KEYVAL_INVALID and marks the attribute key

for deallocation. You can free an attribute key that is in use because the actual

deallocation occurs only when all active references to it are complete. These

references, however, need to be explicitly freed. Use calls to

MPI_COMM_DELETE_ATTR to free one attribute instance. To free all attribute

instances associated with a communicator, use MPI_COMM_FREE.

Parameters

comm_keyval

The key value (integer) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_FREE_KEYVAL supersedes MPI_KEYVAL_FREE.

MPI_COMM_FREE_KEYVAL does not inter-operate with MPI_KEYVAL_FREE. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information

 MPI_COMM_CREATE_KEYVAL

 MPI_KEYVAL_FREE

MPI_COMM_FREE_KEYVAL

126 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_GET_ATTR, MPI_Comm_get_attr

Purpose

Retrieves the communicator attribute value identified by the key.

C synopsis

#include <mpi.h>

int MPI_Comm_get_attr (MPI_Comm comm, int comm_keyval,

 void *attribute_val, int *flag);

C++ synopsis

#include mpi.h

bool MPI::Comm::Get_attr(int comm_keyval, void* attribute_val) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_GET_ATTR(INTEGER COMM, INTEGER COMM_KEYVAL, INTEGER ATTRIBUTE_VAL,

 LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine retrieves an attribute value by key. If there is no key with value

keyval, the call is erroneous. However, the call is valid if there is a key value keyval,

but no attribute is attached on comm for that key. In this case, the call returns flag

set to false.

Parameters

comm

The communicator to which the attribute is attached (handle) (IN)

comm_keyval

The key value (integer) (IN)

attribute_val

The attribute value, unless flag is false (OUT)

flag

Set to false if there is no attribute associated with the key (logical) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_GET_ATTR supersedes MPI_ATTR_GET.

MPI_COMM_GET_ATTR does not inter-operate with MPI_ATTR_GET. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_COMM_SET_ATTR and MPI_COMM_GET_ATTR

involves saving a single word of information in the communicator. The languages C

and FORTRAN have different approaches to using this capability:

MPI_COMM_GET_ATTR

Chapter 3. MPI subroutines and functions 127

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_COMM_SET_ATTR, you allocate some storage

for the attribute structure and then call MPI_COMM_SET_ATTR to record the

address of this structure. You must make sure that the structure remains intact

as long as it may be useful. As the programmer, you will also declare a variable

of type “pointer to attribute structure” and pass the address of this variable when

calling MPI_COMM_GET_ATTR. Both MPI_COMM_SET_ATTR and

MPI_COMM_GET_ATTR take a void* parameter, but this does not imply that

the same parameter is passed to either one.

In FORTRAN:

 MPI_COMM_SET_ATTR records an address-size integer and

MPI_COMM_GET_ATTR returns the address-size integer. As the programmer,

you can choose to encode all attribute information in this integer or maintain

some kind of database in which the integer can index. Either of these

approaches will port to other MPI implementations.

 Many of the FORTRAN compilers include an additional feature that allows some

of the same functions a C programmer would use. These compilers support the

POINTER type, often referred to as a Cray pointer. XL FORTRAN is one of the

compilers that supports the POINTER type. For more information, see IBM XL

FORTRAN Compiler for AIX Reference

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information

 MPI_ATTR_GET

 MPI_COMM_DELETE_ATTR

 MPI_COMM_SET_ATTR

MPI_COMM_GET_ATTR

128 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_GET_ERRHANDLER, MPI_Comm_get_errhandler

Purpose

Retrieves the error handler currently associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_get_errhandler (MPI_Comm comm, MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

MPI::Errhandler MPI::Comm::Get_errhandler() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_GET_ERRHANDLER(INTEGER COMM, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine returns the error handler errhandler currently associated with

communicator comm.

Parameters

comm

The communicator (handle) (IN)

errhandler

The error handler that is currently associated with the communicator (handle)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_GET_ERRHANDLER supersedes MPI_ERRHANDLER_GET.

Errors

Fatal errors:

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_CALL_ERRHANDLER

 MPI_COMM_CREATE_ERRHANDLER

 MPI_COMM_SET_ERRHANDLER

 MPI_ERRHANDLER_FREE

MPI_COMM_GET_ERRHANDLER

Chapter 3. MPI subroutines and functions 129

MPI_COMM_GET_NAME, MPI_Comm_get_name

Purpose

Returns the name that was last associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_get_name (MPI_Comm comm, char *comm_name, int *resultlen);

C++ synopsis

#include mpi.h

void MPI::Comm::Get_name(char* comm_name, int& resultlen) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_GET_NAME(INTEGER COMM, CHARACTER*(*) COMM_NAME, INTEGER RESULTLEN,

 INTEGER IERROR)

Description

This subroutine returns the name that was last associated with the specified

communicator. The name can be set and retrieved from any language. The same

name is returned independent of the language used. The name should be allocated

so it can hold a resulting string that is the length of MPI_MAX_OBJECT_NAME. For

PE MPI, the value of MPI_MAX_OBJECT_NAME is 256. MPI_COMM_GET_NAME

returns a copy of the set name in comm_name.

Parameters

comm

The communicator with the name to be returned (handle) (IN)

comm_name

The name previously stored on the communicator, or an empty string if no such

name exists (string) (OUT)

resultlen

The length of the returned name (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

If you did not associate a name with a communicator, or if an error occurs,

MPI_COMM_GET_NAME returns an empty string (all spaces in FORTRAN or ″″ in

C and C++). The two predefined communicators have predefined names associated

with them. Thus, the names of MPI_COMM_SELF and MPI_COMM_WORLD have

the default of MPI_COMM_SELF and MPI_COMM_WORLD. The fact that the

system may have assigned a default name to a communicator does not prevent you

from setting a name on the same communicator. Doing this removes the old name

and assigns the new one.

It is safe simply to print the string returned by MPI_COMM_GET_NAME, as it is

always a valid string even if there was no name.

MPI_COMM_GET_NAME

130 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Fatal errors:

Invalid communicator

MPI already finalized

MPI not initialized

Related information

 MPI::Comm::Clone

 MPI_COMM_DUP

 MPI_COMM_SET_NAME

MPI_COMM_GET_NAME

Chapter 3. MPI subroutines and functions 131

MPI_COMM_GROUP, MPI_Comm_group

Purpose

Returns the group handle associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_group(MPI_Comm comm,MPI_Group *group);

C++ synopsis

#include mpi.h

MPI::Group MPI::Comm::Get_group() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_GROUP(INTEGER COMM,INTEGER GROUP,INTEGER IERROR)

Description

This subroutine returns the group handle associated with a communicator.

Parameters

comm

The communicator (handle) (IN)

group

The group corresponding to comm (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

If comm is an inter-communicator, group is set to the local group. To determine the

remote group of an inter-communicator, use MPI_COMM_REMOTE_GROUP.

Errors

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_REMOTE_GROUP

MPI_COMM_GROUP

132 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_RANK, MPI_Comm_rank

Purpose

Returns the rank of the local task in the group associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_rank(MPI_Comm comm,int *rank);

C++ synopsis

#include mpi.h

int MPI::Comm::Get_rank() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_RANK(INTEGER COMM,INTEGER RANK,INTEGER IERROR)

Description

This subroutine returns the rank of the local task in the group associated with a

communicator.

You can use this subroutine with MPI_COMM_SIZE to determine the amount of

concurrency available for a specific job. MPI_COMM_RANK indicates the rank of

the task that calls it in the range from 0 to size-1 , where size is the output

parameter of MPI_COMM_SIZE.

If comm is an inter-communicator, rank is the rank of the local task in the local

group.

Parameters

comm

The communicator (handle) (IN)

rank

An integer specifying the rank of the calling task in group of comm (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_RANK

MPI_COMM_RANK

Chapter 3. MPI subroutines and functions 133

MPI_COMM_REMOTE_GROUP, MPI_Comm_remote_group

Purpose

Returns the handle of the remote group of an inter-communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_remote_group(MPI_Comm comm,MPI_group *group);

C++ synopsis

#include mpi.h

MPI::Group MPI::Intercomm::Get_remote_group() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_REMOTE_GROUP(INTEGER COMM,MPI_GROUP GROUP,INTEGER IERROR)

Description

This subroutine is a local operation that returns the handle of the remote group of

an inter-communicator.

Parameters

comm

The inter-communicator (handle) (IN)

group

The remote group corresponding to comm. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

To determine the local group of an inter-communicator, use MPI_COMM_GROUP.

Errors

Invalid communicator

Invalid communicator type

Communication type must be inter-communicator.

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_GROUP

MPI_COMM_REMOTE_GROUP

134 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size

Purpose

Returns the size of the remote group of an inter-communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_remote_size(MPI_Comm comm,int *size);

C++ synopsis

#include mpi.h

int MPI::Intercomm::Get_remote_size() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_REMOTE_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine is a local operation that returns the size of the remote group of an

inter-communicator.

Parameters

comm

The inter-communicator (handle) (IN)

size

An integer specifying the number of tasks in the remote group of comm. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

To determine the size of the local group of an inter-communicator, use

MPI_COMM_SIZE.

Errors

Invalid communicator

Invalid communicator type

Communication type must be inter-communicator.

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_SIZE

MPI_COMM_REMOTE_SIZE

Chapter 3. MPI subroutines and functions 135

MPI_COMM_SET_ATTR, MPI_Comm_set_attr

Purpose

Attaches the communicator attribute value to the communicator and associates it

with the key.

C synopsis

#include <mpi.h>

int MPI_Comm_set_attr (MPI_Comm comm, int comm_keyval, void *attribute_val);

C++ synopsis

#include mpi.h

void MPI::Comm::Set_attr(int comm_keyval, const void* attribute_val) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_SET_ATTR(INTEGER COMM, INTEGER COMM_KEYVAL,

 INTEGER ATTRIBUTE_VAL, INTEGER IERROR)

Description

This subroutine stores the attribute value for retrieval by MPI_COMM_GET_ATTR.

Any previous value is deleted with the attribute delete_fn being called and the new

value is stored. If there is no key with value keyval, the call is erroneous.

Parameters

comm

The communicator to which the attribute will be attached (handle) (INOUT)

comm_keyval

The key value (integer) (IN)

attribute_val

The attribute value (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_SET_ATTR supersedes MPI_ATTR_PUT.

MPI_COMM_SET_ATTR does not inter-operate with MPI_ATTR_PUT. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

The implementation of MPI_COMM_SET_ATTR and MPI_COMM_GET_ATTR

involves saving a single word of information in the communicator. The languages C

and FORTRAN have different approaches to using this capability:

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_COMM_SET_ATTR, you allocate some storage

for the attribute structure and then call MPI_COMM_SET_ATTR to record the

MPI_COMM_SET_ATTR

136 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

address of this structure. You must make sure that the structure remains intact

as long as it may be useful. As the programmer, you will also declare a variable

of type “pointer to attribute structure” and pass the address of this variable when

calling MPI_COMM_GET_ATTR. Both MPI_COMM_SET_ATTR and

MPI_COMM_GET_ATTR take a void* parameter, but this does not imply that

the same parameter is passed to either one.

In FORTRAN:

MPI_COMM_SET_ATTR records an address-size integer and

MPI_COMM_GET_ATTR returns the address-size integer. As the programmer,

you can choose to encode all attribute information in this integer or maintain

some kind of database in which the integer can index. Either of these

approaches will port to other MPI implementations.

 Many of the FORTRAN compilers include an additional feature that allows some

of the same functions a C programmer would use. These compilers support the

POINTER type, often referred to as a Cray pointer. XL FORTRAN is one of the

compilers that supports the POINTER type. For more information, see IBM XL

FORTRAN Compiler for AIX Reference

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Wrong keytype (MPI_ERR_ARG) attribute key is not a communicator key

Related information

 MPI_ATTR_PUT

 MPI_COMM_DELETE_ATTR

 MPI_COMM_GET_ATTR

MPI_COMM_SET_ATTR

Chapter 3. MPI subroutines and functions 137

MPI_COMM_SET_ERRHANDLER, MPI_Comm_set_errhandler

Purpose

Attaches a new error handler to a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_set_errhandler (MPI_Comm comm, MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

void MPI::Comm::Set_errhandler(const MPI::Errhandler& errhandler);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_SET_ERRHANDLER(INTEGER COMM, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine attaches a new error handler to a communicator. The error handler

must be either a predefined error handler, or an error handler created by a call to

MPI_COMM_CREATE_ERRHANDLER. The previously-attached error handler is

replaced.

Parameters

comm

The communicator (handle) (INOUT)

errhandler

The new error handler for the communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_SET_ERRHANDLER supersedes MPI_ERRHANDLER_SET.

For information about a predefined error handler for C++, see IBM Parallel

Environment: MPI Programming Guide.

Errors

Invalid communicator

Invalid error handler

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_CALL_ERRHANDLER

 MPI_COMM_CREATE_ERRHANDLER

 MPI_COMM_GET_ERRHANDLER

 MPI_ERRHANDLER_FREE

MPI_COMM_SET_ERRHANDLER

138 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_SET_NAME, MPI_Comm_set_name

Purpose

Associates a name string with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_set_name (MPI_Comm comm, char *comm_name);

C++ synopsis

#include mpi.h

void MPI::Comm::Set_name(const char* comm_name);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_SET_NAME(INTEGER COMM, CHARACTER*(*) COMM_NAME, INTEGER IERROR)

Description

This subroutine lets you associate a name string with a communicator. The name is

intended for use as an identifier, so when the communicator is copied or duplicated,

the name does not propagate.

The character string that is passed to MPI_COMM_SET_NAME is copied to space

managed by the MPI library (so it can be freed by the caller immediately after the

call, or allocated on the stack). Leading spaces in the name are significant, but

trailing spaces are not.

Parameters

comm

The communicator with the identifier to be set (handle) (INOUT)

comm_name

The character string that is saved as the communicator’s name (string) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_SET_NAME is a local (noncollective) operation, which affects only the

name of the communicator as specified in the task that made the

MPI_COMM_SET_NAME call. There is no requirement that the same (or any)

name be assigned to a communicator in every task where that communicator

exists. However, to avoid confusion, it is a good idea to give the same name to a

communicator in all of the tasks where it exists.

The length of the name that can be stored is limited to the value of

MPI_MAX_OBJECT_NAME in FORTRAN and MPI_MAX_OBJECT_NAME-1 in C

and C++ to allow for the null terminator. An attempt to use a longer name is not an

error, but will result in truncation of the name. For PE MPI, the value of

MPI_MAX_OBJECT_NAME is 256.

Associating a name with a communicator has no effect on the semantics of an MPI

program, and (necessarily) increases the store requirement of the program,

MPI_COMM_SET_NAME

Chapter 3. MPI subroutines and functions 139

because the names must be saved. Therefore, there is no requirement that you use

this function to associate names with communicators. However, debugging and

profiling MPI applications can be made easier if names are associated with

communicators, as the debugger or profiler should then be able to present

information in a less cryptic manner.

Errors

Fatal errors:

Invalid communicator

MPI already finalized

MPI not initialized

Related information

 MPI::Comm::Clone

 MPI_COMM_DUP

 MPI_COMM_GET_NAME

MPI_COMM_SET_NAME

140 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_SIZE, MPI_Comm_size

Purpose

Returns the size of the group associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Comm_size(MPI_Comm comm,int *size);

C++ synopsis

#include mpi.h

int MPI::Comm::Get_size() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_SIZE(INTEGER COMM,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine returns the size of the group associated with a communicator.

If comm is an inter-communicator, size will be the size of the local group. To

determine the size of the remote group of an inter-communicator, use

MPI_COMM_REMOTE_SIZE.

You can use this subroutine with MPI_COMM_RANK to determine the amount of

concurrency available for a specific library or program. MPI_COMM_RANK

indicates the rank of the task that calls it in the range from 0...size – 1, where size

is the output parameter of MPI_COMM_SIZE. The rank and size information can

then be used to partition work across the available tasks.

Parameters

comm

The communicator (handle) (IN)

size

An integer specifying the number of tasks in the group of comm (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

This function indicates the number of tasks in a communicator. For

MPI_COMM_WORLD, it indicates the total number of tasks available.

Errors

Invalid communicator

MPI not initialized

MPI already finalized

MPI_COMM_SIZE

Chapter 3. MPI subroutines and functions 141

Related information

 MPI_COMM_GROUP

 MPI_COMM_RANK

 MPI_COMM_REMOTE_SIZE

 MPI_GROUP_FREE

 MPI_GROUP_SIZE

MPI_COMM_SIZE

142 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_SPLIT, MPI_Comm_split

Purpose

Splits a communicator into multiple communicators based on color and key.

C synopsis

#include <mpi.h>

int MPI_Comm_split(MPI_Comm comm_in, int color, int key, MPI_Comm *comm_out);

C++ synopsis

#include mpi.h

MPI::Intercomm MPI::Intercomm::Split(int color, int key) const;

#include mpi.h

MPI::Intracomm MPI::Intracomm::Split(int color, int key) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_SPLIT(INTEGER COMM_IN, INTEGER COLOR, INTEGER KEY,

 INTEGER COMM_OUT, INTEGER IERROR)

Description

MPI_COMM_SPLIT is a collective operation that partitions the group associated

with comm_in into disjoint subgroups, one for each value of color. Each subgroup

contains all tasks of the same color. Within each subgroup, the tasks are ranked in

the order defined by the value of the argument key. Ties are broken according to

their rank in the old group. A new communicator is created for each subgroup and

returned in comm_out. If a task supplies the color value MPI_UNDEFINED,

comm_out returns MPI_COMM_NULL. Even though this is a collective operation,

each task is allowed to provide different values for color and key.

The value of color must be greater than or equal to 0.

Parameters

comm_in

The original communicator (handle) (IN)

color

An integer specifying control of subset assignment (IN)

key

An integer specifying control of rank assignment (IN)

comm_out

The new communicator (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The result of MPI_COMM_SPLIT on an inter-communicator is that those tasks on

one side of the inter-communicator with the same color as those tasks on the other

side of the inter-communicator combine to create a new inter-communicator. The

key argument describes the relative rank of tasks on each side of the

inter-communicator. For those colors that are specified only on one side of the

MPI_COMM_SPLIT

Chapter 3. MPI subroutines and functions 143

inter-communicator, MPI_COMM_NULL is returned. MPI_COMM_NULL is also

returned to those tasks that specify MPI_UNDEFINED as the color.

Errors

Fatal errors:

Conflicting collective operations on communicator

Invalid color

color < 0

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_CART_SUB

MPI_COMM_SPLIT

144 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_COMM_TEST_INTER, MPI_Comm_test_inter

Purpose

Returns the type of a communicator (intra- or inter-).

C synopsis

#include <mpi.h>

int MPI_Comm_test_inter(MPI_Comm comm,int *flag);

C++ synopsis

#include mpi.h

bool MPI::Comm::Is_inter() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_COMM_TEST_INTER(INTEGER COMM,LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine is used to determine if a communicator is an inter- or

intra-communicator.

If comm is an inter-communicator, the call returns true. If comm is an

intra-communicator, the call returns false.

Parameters

comm

The communicator (handle) (INOUT)

flag

The communicator type (logical)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Though many subroutines accept either an inter-communicator or an

intra-communicator, the usage and semantic can be quite different.

Errors

Invalid communicator

MPI not initialized

MPI already finalized

MPI_COMM_TEST_INTER

Chapter 3. MPI subroutines and functions 145

MPI_DIMS_CREATE, MPI_Dims_create

Purpose

Defines a Cartesian grid to balance tasks.

C synopsis

#include <mpi.h>

MPI_Dims_create(int nnodes,int ndims,int *dims);

C++ synopsis

#include mpi.h

void MPI::Compute_dims(int nnodes, int ndims, int dims[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_DIMS_CREATE(INTEGER NNODES,INTEGER NDIMS,INTEGER DIMS(*),

 INTEGER IERROR)

Description

This subroutine creates a Cartesian grid with a given number of dimensions and a

given number of nodes. The dimensions are constrained to be as close to each

other as possible.

If dims[i] is a positive number when MPI_DIMS_CREATE is called, the routine will

not modify the number of nodes in dimension i. Only those entries where dims[i] is

equal to 0 are modified by the call.

Parameters

nnodes

An integer specifying the number of nodes in a grid (IN)

ndims

An integer specifying the number of Cartesian dimensions (IN)

dims

An integer array of size ndims that specifies the number of nodes in each

dimension. (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_DIMS_CREATE chooses dimensions so that the resulting grid is as close as

possible to being an ndims–dimensional cube.

Errors

MPI not initialized

MPI already finalized

Invalid ndims

ndims < 0

MPI_DIMS_CREATE

146 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid nnodes

nnodes < 0

Invalid dimension

dims[i] < 0 or nnodes is not a multiple of the nonzero entries of dims

Related information

 MPI_CART_CREATE

MPI_DIMS_CREATE

Chapter 3. MPI subroutines and functions 147

MPI_Errhandler_c2f

Purpose

Translates a C error handler into a FORTRAN handle to the same error handler.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler);

Description

This function does not have C++ or FORTRAN bindings. MPI_Errhandler_c2f

translates a C error handler into a FORTRAN handle to the same error handler. The

converted handle is returned as the function’s value. There is no error detection or

return code.

Parameters

errhandler

The error handler (handle) (IN)

Errors

None.

Related information

 MPI_Errhandler_f2c

MPI_Errhandler_c2f

148 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ERRHANDLER_CREATE, MPI_Errhandler_create

Purpose

Registers a user-defined error handler.

C synopsis

#include <mpi.h>

int MPI_Errhandler_create(MPI_Handler_function *function,

 MPI_Errhandler *errhandler);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ERRHANDLER_CREATE(EXTERNAL FUNCTION,INTEGER ERRHANDLER,

 INTEGER IERROR)

Description

This subroutine registers the user routine function for use as an MPI error handler.

You can associate an error handler with a communicator. MPI will use the specified

error handling routine for any exception that takes place during a call on this

communicator. Different tasks can attach different error handlers to the same

communicator. MPI calls not related to a specific communicator are considered as

attached to the communicator MPI_COMM_WORLD.

Parameters

function

A user-defined error handling procedure (IN)

errhandler

An MPI error handler (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPI standard specifies a varargs error handler prototype. A correct user error

handler would be coded as:

void my_handler(MPI_Comm *comm, int *errcode, ...){}

PE MPI passes additional arguments to an error handler. The MPI standard allows

this and urges an MPI implementation that does so to document the additional

arguments. These additional arguments will be ignored by fully portable user error

handlers. The extra errhandler arguments can be accessed by using the C varargs

(or stdargs) facility, but programs that do so will not port cleanly to other MPI

implementations that might have different additional arguments.

The effective prototype for an error handler in PE MPI is:

typedef void (MPI_Handler_function)

 (MPI_Comm *comm, int *code, char *routine_name, int *flag,

 MPI_Aint *badval)

The additional arguments are:

MPI_ERRHANDLER_CREATE

Chapter 3. MPI subroutines and functions 149

routine_name

The name of the MPI routine in which the error occurred

flag Set to true if badval is meaningful, otherwise set to false.

badval

The incorrect integer or long value that triggered the error

The interpretation of badval is context-dependent, so badval is not likely to be

useful to a user error handler function that cannot identify this context. The

routine_name string is more likely to be useful.

Errors

MPI not initialized

MPI already finalized

Null function not allowed

function cannot be NULL.

Related information

 MPI_ERRHANDLER_FREE

 MPI_ERRHANDLER_GET

 MPI_ERRHANDLER_SET

MPI_ERRHANDLER_CREATE

150 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Errhandler_f2c

Purpose

Returns a C handle to an error handler.

C synopsis

#include <mpi.h>

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errorhandler);

Description

This function does not have C++ or FORTRAN bindings. MPI_Errhandler_f2c

returns a C handle to an error handler. If errhandler is a valid FORTRAN handle to

an error handler, MPI_Errhandler_f2c returns a valid C handle to that same error

handler. If errhandler is not a valid FORTRAN handle, MPI_Errhandler_f2c returns a

non-valid C handle. The converted handle is returned as the function’s value. There

is no error detection or return code.

Parameters

errhandler

The error handler (handle) (IN)

Errors

None.

Related information

 MPI_Errhandler_c2f

MPI_Errhandler_f2c

Chapter 3. MPI subroutines and functions 151

MPI_ERRHANDLER_FREE, MPI_Errhandler_free

Purpose

Marks an error handler for deallocation.

C synopsis

#include <mpi.h>

int MPI_Errhandler_free(MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

void MPI::Errhandler::Free();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ERRHANDLER_FREE(INTEGER ERRHANDLER,INTEGER IERROR)

Description

This subroutine marks errhandler for deallocation and sets it (errhandler) to

MPI_ERRHANDLER_NULL. Actual deallocation occurs when all communicators

associated with the error handler have been deallocated or have had new error

handlers attached.

Parameters

errhandler

An MPI error handler (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid error handler

MPI not initialized

MPI already finalized

Related information

 MPI_ERRHANDLER_CREATE

MPI_ERRHANDLER_FREE

152 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ERRHANDLER_GET, MPI_Errhandler_get

Purpose

Gets an error handler associated with a communicator.

C synopsis

#include <mpi.h>

int MPI_Errhandler_get(MPI_Comm comm,MPI_Errhandler *errhandler);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ERRHANDLER_GET(INTEGER COMM,INTEGER ERRHANDLER,INTEGER IERROR)

Description

This subroutine returns the error handler errhandler currently associated with

communicator comm.

Parameters

comm

A communicator (handle) (IN)

errhandler

The MPI error handler currently associated with comm (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_ERRHANDLER_CREATE

 MPI_ERRHANDLER_SET

MPI_ERRHANDLER_GET

Chapter 3. MPI subroutines and functions 153

MPI_ERRHANDLER_SET, MPI_Errhandler_set

Purpose

Associates a new error handler with a communicator.

C synopsis

#include <mpi.h>

int MPI_Errhandler_set(MPI_Comm comm,MPI_Errhandler errhandler);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ERRHANDLER_SET(INTEGER COMM, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine associates error handler errhandler with communicator comm. The

association is local.

MPI will use the specified error handling routine for any exception that takes place

during a call on this communicator. Different tasks can attach different error

handlers to the same communicator. MPI calls not related to a specific

communicator are considered as attached to the communicator

MPI_COMM_WORLD.

Parameters

comm

A communicator (handle) (IN)

errhandler

A new MPI error handler for comm (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

An error handler that does not end in the MPI job being terminated, creates

undefined risks. Some errors are harmless, while others are catastrophic. For

example, an error detected by one member of a collective operation can result in

other members waiting indefinitely for an operation which will never occur.

It is also important to note that the MPI standard does not specify the state the MPI

library should be in after an error occurs. MPI does not provide a way for users to

determine how much, if any, damage has been done to the MPI state by a

particular error.

The default error handler is MPI_ERRORS_ARE_FATAL, which behaves as if it

contains a call to MPI_ABORT. MPI_ERRHANDLER_SET allows users to replace

MPI_ERRORS_ARE_FATAL with an alternate error handler. The MPI standard

provides MPI_ERRORS_RETURN, and IBM adds the nonstandard

MPE_ERRORS_WARN. These are pre-defined handlers that cause the error code

to be returned and MPI to continue to run. Error handlers that are written by MPI

users may call MPI_ABORT. If they do not abort, they too will cause MPI to deliver

an error return code to the caller and continue to run.

MPI_ERRHANDLER_SET

154 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Error handlers that let MPI return should be used only if every MPI call checks its

return code. Continuing to use MPI after an error involves undefined risks. You may

do cleanup after an MPI error is detected, as long as it does not use MPI calls. This

should normally be followed by a call to MPI_ABORT.

The error Invalid error handler will be raised if errhandler is either a file error

handler (created with MPI_FILE_CREATE_ERRHANDLER) or a window error

handler (created with MPI_WIN_CREATE_ERRHANDLER). The predefined error

handlers MPI_ERRORS_ARE_FATAL and MPI_ERRORS_RETURN can be

associated with both communicators and file handles.

Errors

Invalid communicator

Invalid error handler

MPI not initialized

MPI already finalized

Related information

 MPI_ERRHANDLER_CREATE

 MPI_ERRHANDLER_GET

MPI_ERRHANDLER_SET

Chapter 3. MPI subroutines and functions 155

MPI_ERROR_CLASS, MPI_Error_class

Purpose

Returns the error class for the corresponding error code.

C synopsis

#include <mpi.h>

int MPI_Error_class(int errorcode,int *errorclass);

C++ synopsis

#include mpi.h

int MPI::Get_error_class(int errorcode);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ERROR_CLASS(INTEGER ERRORCODE,INTEGER ERRORCLASS,INTEGER IERROR)

Description

This subroutine returns the error class corresponding to an error code.

This is a list of the predefined error classes.

Error class Description

MPI_ERR_ACCESS permission denied

MPI_ERR_AMODE error related to the amode passed to

MPI_FILE_OPEN

MPI_ERR_ARG non-valid argument

MPI_ERR_ASSERT non-valid assert argument

MPI_ERR_BAD_FILE non-valid file name (the path name is too long, for

example)

MPI_ERR_BASE non-valid base argument

MPI_ERR_BUFFER non-valid buffer pointer

MPI_ERR_COMM non-valid communicator

MPI_ERR_CONVERSION An error occurred in a user-supplied data

conversion function.

MPI_ERR_COUNT non-valid count argument

MPI_ERR_DIMS non-valid dimension argument

MPI_ERR_DISP non-valid disp argument

MPI_ERR_DUP_DATAREP Conversion functions could not be registered

because a previously-defined data representation

was passed to MPI_REGISTER_DATAREP.

MPI_ERR_FILE non-valid file handle

MPI_ERR_FILE_EXISTS file exists

MPI_ERR_FILE_IN_USE File operation could not be completed because the

file is currently opened by some task.

MPI_ERROR_CLASS

156 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|

||

||

||
|

||

||

||
|

||

||

||

||
|

||

||

||

||
|
|

||

||

||
|

MPI_ERR_GROUP non-valid group

MPI_ERR_IN_STATUS error code is in status

MPI_ERR_INFO Info object is not valid

MPI_ERR_INFO_NOKEY Info key is not defined

MPI_ERR_INFO_VALUE info value is not valid

MPI_ERR_INTERN internal MPI error

MPI_ERR_IO other I/O error

MPI_ERR_LASTCODE last standard error code

MPI_ERR_LOCKTYPE non-valid locktype argument

MPI_ERR_NO_SPACE Not enough space

MPI_ERR_NO_SUCH_FILE File does not exist

MPI_ERR_NOT_SAME Collective argument is not identical on all tasks.

MPI_ERR_OP non-valid operation

MPI_ERR_OTHER known error not provided

MPI_ERR_PENDING pending request

MPI_ERR_QUOTA quota exceeded

MPI_ERR_RANK non-valid rank

MPI_ERR_READ_ONLY read-only file or file system

MPI_ERR_REQUEST non-valid request (handle)

MPI_ERR_RMA_CONFLICT conflicting accesses to window

MPI_ERR_RMA_SYNC incorrect synchronization of RMA calls

MPI_ERR_ROOT non-valid root

MPI_ERR_SIZE non-valid size argument

MPI_ERR_TAG non-valid tag argument

MPI_ERR_TOPOLOGY non-valid topology

MPI_ERR_TRUNCATE Message truncated on receive.

MPI_ERR_TYPE non-valid data type argument

MPI_ERR_UNKNOWN unknown error

MPI_ERR_UNSUPPORTED_DATAREP

Unsupported datarep passed to

MPI_FILE_SET_VIEW.

MPI_ERR_UNSUPPORTED_OPERATION

Unsupported operation, such as seeking on a file

that supports only sequential access.

MPI_ERR_WIN non-valid win argument

MPI_SUCCESS

Parameters

errorcode

The predefined or user-created error code returned by an MPI subroutine (IN)

MPI_ERROR_CLASS

Chapter 3. MPI subroutines and functions 157

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

|
|
|

|
|
|

||

|

|

errorclass

The predefined or user-defined error class for errorcode (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

For PE MPI, see the IBM Parallel Environment: Messages, which provides a list of

all the error messages issued, as well as the error class to which the message

belongs. Be aware that the MPI standard is not explicit enough about error classes

to guarantee that every implementation of MPI will use the same error class for

every detectable user error.

In general, the subroutine return code and the error message associated with it

provide more specific information than the error class does.

This subroutine can also return new error classes that are defined by a user

application. The meaning of such classes is determined entirely by the user who

creates them. User-defined error classes will be found only on user-created error

codes.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_ADD_ERROR_CLASS

 MPI_ADD_ERROR_CODE

 MPI_ERROR_STRING

MPI_ERROR_CLASS

158 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_ERROR_STRING, MPI_Error_string

Purpose

Returns the error string for a given error code.

C synopsis

#include <mpi.h>

int MPI_Error_string(int errorcode,char *string,

 int *resultlen);

C++ synopsis

#include mpi.h

void MPI::Get_error_string(int errorcode, char* string, int& resultlen);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ERROR_STRING(INTEGER ERRORCODE,CHARCTER STRING(*),

 INTEGER RESULTLEN,INTEGER IERROR)

Description

This subroutine returns the error string for a given error code. The returned string

is null terminated with the terminating byte not counted in resultlen.

Storage for string must be at least MPI_MAX_ERROR_STRING characters long.

The number of characters actually written is returned in resultlen.

This subroutine returns an empty string (all spaces in FORTRAN, ″″ in C and C++)

for any user-defined error code or error class, unless the the user provides a string

using MPI_ADD_ERROR_STRING.

Parameters

errorcode

The error code returned by an MPI routine (IN)

string

The error message for the errorcode (OUT)

resultlen

The character length of string (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid error code

The errorcode is not defined.

MPI not initialized

MPI already finalized

Related information

 MPI_ADD_ERROR_STRING

 MPI_ERROR_CLASS

MPI_ERROR_STRING

Chapter 3. MPI subroutines and functions 159

MPI_EXSCAN, MPI_Exscan

Purpose

Performs a prefix reduction on data distributed across the group.

C synopsis

#include <mpi.h>

int MPI_Exscan(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op, MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Intracomm::Exscan(const void* sendbuf, void* recvbuf, int count,

 const MPI::Datatype& datatype, const MPI::Op& op) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_EXSCAN(CHOICE SENDBUF, CHOICE RECVBUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER OP, INTEGER COMM, INTEGER IERROR)

Description

Use this subroutine to perform a prefix reduction operation on data distributed

across a group. The value in recvbuf on the task with rank 0 is undefined, and

recvbuf is not significant on task 0. The value in recvbuf on the task with rank 1 is

defined as the value in sendbuf on the task with rank 0. For tasks with rank i > 1,

the operation returns, in the receive buffer of the task with rank i, the reduction of

the values in the send buffers of tasks with ranks 0 to i-1 inclusive. The type of

operations supported, their semantics, and the constraints on send and receive

buffers, are as for MPI_REDUCE.

MPI_EXSCAN is not supported for inter-communicators and does not accept

MPI_IN_PLACE.

The parameter op may be a predefined reduction operation or a user-defined

function, created using MPI_OP_CREATE. This is a list of predefined reduction

operations:

Operation Definition

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_BXOR Bitwise XOR

MPI_LAND Logical AND

MPI_LOR Logical OR

MPI_LXOR Logical XOR

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_PROD Product

MPI_EXSCAN

160 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

MPI_SUM Sum

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

recvbuf

The starting address of the receive buffer (choice) (OUT)

count

The number of elements in the input buffer (integer) (IN)

datatype

The data type of elements in the input buffer (handle) (IN)

op The reduction operation (handle) (IN)

comm

The intra-communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

As for MPI_SCAN, MPI does not specify which tasks can call the reduction

operation, only that the result be correctly computed. In particular, note that the task

with rank 1 need not call the MPI_Op, because all it needs to do is to receive the

value from the task with rank 0. However, all tasks, even the tasks with ranks 0 and

1, must provide the same op.

Errors

Fatal errors:

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

MPI_EXSCAN

Chapter 3. MPI subroutines and functions 161

||

Inconsistent message length

Related information

 MPI_REDUCE

 MPI_SCAN

MPI_EXSCAN

162 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_File_c2f

Purpose

Translates a C file handle into a FORTRAN handle to the same file.

C synopsis

#include <mpi.h>

MPI_Fint MPI_File_c2f(MPI_File file);

Description

This function does not have C++ or FORTRAN bindings. MPI_File_c2f translates a

C file handle into a FORTRAN handle to the same file. This function maps a null

handle into a null handle and a non-valid handle into a non-valid handle. The

converted handle is returned as the function’s value. There is no error detection or

return code.

Parameters

file

The file (handle) (IN)

Errors

None.

Related information

 MPI_File_f2c

MPI_File_c2f

Chapter 3. MPI subroutines and functions 163

MPI_FILE_CALL_ERRHANDLER, MPI_File_call_errhandler

Purpose

Calls the error handler assigned to the file with the error code supplied.

C synopsis

#include <mpi.h>

int MPI_File_call_errhandler (MPI_File fh, int errorcode);

C++ synopsis

#include mpi.h

void MPI::File::Call_errhandler(int errorcode) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_CALL_ERRHANDLER(INTEGER FH, INTEGER ERRORCODE, INTEGER IERROR)

Description

This subroutine calls the error handler assigned to the file with the error code

supplied.

Parameters

fh The file with the error handler (handle) (IN)

errorcode

The error code (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_FILE_CALL_ERRHANDLER returns MPI_SUCCESS in C and C++ and the

same value in IERROR if the error handler was successfully called (assuming the

error handler itself is not fatal).

The default error handler for files is MPI_ERRORS_RETURN. Thus, calling

MPI_FILE_CALL_ERRHANDLER will be transparent if the default error handler has

not been changed for this file or on the parent before the file was created. When a

predefined error handler is used on fh, the error message printed by PE MPI is a

specific PE MPI error message that will indicate the error code that is passed in.

You cannot force PE MPI to issue a caller-chosen predefined error by passing its

error code to this subroutine.

Error handlers should not be called recursively with

MPI_FILE_CALL_ERRHANDLER. Doing this can create a situation where an infinite

recursion is created. This can occur if MPI_FILE_CALL_ERRHANDLER is called

inside an error handler.

Error codes and classes are associated with a task, so they can be used in any

error handler. An error handler should be prepared to deal with any error code it is

given. Furthermore, it is good practice to call an error handler only with the

appropriate error codes. For example, file errors would normally be sent to the file

error handler.

MPI_FILE_CALL_ERRHANDLER

164 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Invalid error code

The errorcode is not defined.

Invalid file handle

MPI not initialized

MPI already finalized

Related information

 MPI_ERRHANDLER_FREE

 MPI_FILE_CREATE_ERRHANDLER

 MPI_FILE_GET_ERRHANDLER

 MPI_FILE_SET_ERRHANDLER

MPI_FILE_CALL_ERRHANDLER

Chapter 3. MPI subroutines and functions 165

MPI_FILE_CLOSE, MPI_File_close

Purpose

Closes the file referred to by its file handle fh. It may also delete the file if the

appropriate mode was set when the file was opened.

C synopsis

#include <mpi.h>

int MPI_File_close (MPI_File *fh);

C++ synopsis

#include mpi.h

void MPI::File::Close();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_CLOSE(INTEGER FH,INTEGER IERROR)

Description

MPI_FILE_CLOSE closes the file referred to by fh and deallocates associated

internal data structures. This is a collective operation. The file is also deleted if

MPI_MODE_DELETE_ON_CLOSE was set when the file was opened. In this

situation, if other tasks have already opened the file and are still accessing it

concurrently, these accesses will proceed normally, as if the file had not been

deleted, until the tasks close the file. However, new open operations on the file will

fail. If I/O operations are pending on fh, an error is returned to all the participating

tasks, the file is neither closed nor deleted, and fh remains a valid file handle.

Parameters

fh The file handle of the file to be closed (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

You are responsible for making sure all outstanding nonblocking requests and split

collective operations associated with fh made by a task have completed before that

task calls MPI_FILE_CLOSE.

If you call MPI_FINALIZE before all files are closed, an error will be raised on

MPI_COMM_WORLD.

MPI_FILE_CLOSE deallocates the file handle object and sets fh to

MPI_FILE_NULL.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

MPI_FILE_CLOSE

166 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle

Pending I/O operations (MPI_ERR_OTHER)

There are pending I/O operations

Internal close failed (MPI_ERR_IO)

An internal close operation on the file failed

Returning errors when a file is to be deleted (MPI Error Class):

Permission denied (MPI_ERR_ACCESS)

Write access to the directory containing the file is denied

File does not exist (MPI_ERR_NO_SUCH_FILE)

The file that is to be deleted does not exist

Read-only file system (MPI_ERR_READ_ONLY)

The directory containing the file resides on a read-only file system

Internal unlink failed (MPI_ERR_IO)

An internal unlink operation on the file failed

Related information

 MPI_FILE_DELETE

 MPI_FILE_OPEN

 MPI_FINALIZE

MPI_FILE_CLOSE

Chapter 3. MPI subroutines and functions 167

MPI_FILE_CREATE_ERRHANDLER, MPI_File_create_errhandler

Purpose

Registers a user-defined error handler that you can associate with an open file.

C synopsis

#include <mpi.h>

int MPI_File_create_errhandler (MPI_File_errhandler_fn *function,

 MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

static MPI::Errhandler MPI::File::Create_errhandler,

 (MPI::File::Errhandler_fn* function);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_CREATE_ERRHANDLER(EXTERNAL FUNCTION,INTEGER ERRHANDLER,INTEGER IERROR)

Description

MPI_FILE_CREATE_ERRHANDLER registers the user routine function for use as

an MPI error handler that can be associated with a file handle. Once associated

with a file handle, MPI uses the specified error handling routine for any exception

that takes place during a call on this file handle.

Parameters

function

A user defined file error handling procedure (IN)

errhandler

An MPI error handler (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Different tasks can associate different error handlers with the same file.

MPI_ERRHANDLER_FREE is used to free any error handler.

The MPI standard specifies the following error handler prototype:

typedef void (MPI_File_errhandler_fn) (MPI_File *, int *, ...);

A correct user error handler would be coded as:

void my_handler(MPI_File *fh, int *errcode,...){}

PE MPI passes additional arguments to an error handler. The MPI standard allows

this and urges an MPI implementation that does so to document the additional

arguments. These additional arguments will be ignored by fully portable user error

handlers. The extra errhandler arguments can be accessed by using the C varargs

(or stdargs) facility, but programs that do so will not port cleanly to other MPI

implementations that might have different additional arguments.

The effective prototype for an error handler in PE MPI is:

MPI_FILE_CREATE_ERRHANDLER

168 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

typedef void (MPI_File_errhandler_fn)

 (MPI_File *fh, int *code, char *routine_name, int *flag,

 MPI_Aint *badval)

The additional arguments are:

routine_name

The name of the MPI routine in which the error occurred.

flag Set to true if badval is meaningful, set to false if not.

badval

The incorrect integer value that triggered the error.

The interpretation of badval is context-dependent, so badval is not likely to be

useful to a user error handler function that cannot identify this context. The

routine_name string is more likely to be useful.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Null function not allowed

function cannot be NULL.

Related information

 MPI_ERRHANDLER_FREE

 MPI_FILE_CALL_ERRHANDLER

 MPI_FILE_GET_ERRHANDLER

 MPI_FILE_SET_ERRHANDLER

MPI_FILE_CREATE_ERRHANDLER

Chapter 3. MPI subroutines and functions 169

MPI_FILE_DELETE, MPI_File_delete

Purpose

Deletes the file referred to by filename after pending operations on the file

complete. New operations cannot be initiated on the file.

C synopsis

#include <mpi.h>

int MPI_File_delete (char *filename,MPI_Info info);

C++ synopsis

#include mpi.h

static void MPI::File::Delete(const char* filename, const MPI::Info& info);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_DELETE(CHARACTER*(*) FILENAME,INTEGER INFO,

 INTEGER IERROR)

Description

This subroutine deletes the file referred to by filename. If other tasks have already

opened the file and are still accessing it concurrently, these accesses will proceed

normally, as if the file had not been deleted, until the tasks close the file. However,

new open operations on the file will fail. There are no hints defined for

MPI_FILE_DELETE.

Parameters

filename

The name of the file to be deleted (string) (IN)

info

An Info object specifying file hints (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Pathname too long (MPI_ERR_BAD_FILE)

A filename must contain less than 1024 characters.

Invalid file system type (MPI_ERR_OTHER)

filename refers to a file belonging to a file system of an unsupported type.

Invalid info (MPI_ERR_INFO)

info is not a valid Info object.

Permission denied (MPI_ERR_ACCESS)

Write access to the directory containing the file is denied.

MPI_FILE_DELETE

170 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

File or directory does not exist (MPI_ERR_NO_SUCH_FILE)

The file that is to be deleted does not exist, or a directory in the path does

not exist.

Read-only file system (MPI_ERR_READ_ONLY)

The directory containing the file resides on a read-only file system.

Internal unlink failed (MPI_ERR_IO)

An internal unlink operation on the file failed.

Related information

 MPI_FILE_CLOSE

MPI_FILE_DELETE

Chapter 3. MPI subroutines and functions 171

MPI_File_f2c

Purpose

Returns a C handle to a file.

C synopsis

#include <mpi.h>

MPI_File MPI_File_f2c(MPI_Fint file);

Description

This function does not have C++ or FORTRAN bindings. MPI_File_f2c returns a C

handle to a file. If file is a valid FORTRAN handle to a file, MPI_File_f2c returns a

valid C handle to that same file. If file is set to the FORTRAN value

MPI_FILE_NULL, MPI_File_f2c returns the equivalent null C handle. If file is not a

valid FORTRAN handle, MPI_File_f2c returns a non-valid C handle. The converted

handle is returned as the function’s value. There is no error detection or return

code.

Parameters

file

The file (handle) (IN)

Errors

None.

Related information

 MPI_File_c2f

MPI_File_f2c

172 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_AMODE, MPI_File_get_amode

Purpose

Retrieves the access mode specified when the file was opened.

C synopsis

#include <mpi.h>

int MPI_File_get_amode (MPI_File fh,int *amode);

C++ synopsis

#include mpi.h

int MPI::File::Get_amode() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_AMODE(INTEGER FH,INTEGER AMODE,INTEGER IERROR)

Description

MPI_FILE_GET_AMODE lets you retrieve the access mode specified when the file

referred to by fh was opened.

Parameters

fh The file handle (handle) (IN)

amode

The file access mode used to open the file (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Related information

 MPI_FILE_OPEN

MPI_FILE_GET_AMODE

Chapter 3. MPI subroutines and functions 173

MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity

Purpose

Retrieves the current atomicity mode in which the file is accessed.

C synopsis

#include <mpi.h>

int MPI_File_get_atomicity (MPI_File fh,int *flag);

C++ synopsis

#include mpi.h

bool MPI::File::Get_atomicity() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_ATOMICITY (INTEGER FH,LOGICAL FLAG,INTEGER IERROR)

Description

MPI_FILE_GET_ATOMICITY returns 1 in flag if the atomic mode is enabled for the

file referred to by fh. Otherwise, flag returns 0.

Parameters

fh The file handle (handle) (IN)

flag

TRUE if atomic mode, FALSE if nonatomic mode (logical) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The atomic mode is set to FALSE by default when the file is first opened.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Related information

 MPI_FILE_OPEN

 MPI_FILE_SET_ATOMICITY

MPI_FILE_GET_ATOMICITY

174 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_BYTE_OFFSET, MPI_File_get_byte_offset

Purpose

Allows conversion of an offset.

C synopsis

#include <mpi.h>

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

 MPI_Offset *disp);

C++ synopsis

#include mpi.h

MPI::Offset MPI::File::Get_byte_offset(const MPI::Offset disp) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_BYTE_OFFSET(INTEGER FH, INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 INTEGER(KIND=MPI_OFFSET_KIND) DISP, INTEGER IERROR)

Description

This subroutine allows conversion of an offset, expressed as a number of

elementary data types from the file displacement and within the file view, to an

absolute number of bytes from the beginning of the file.

Parameters

fh The file handle (handle) (IN)

offset

The offset (integer) (IN)

disp

The absolute byte position of offset (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid offset (MPI_ERR_FILE)

offset is not a valid offset.

Related information

 MPI_FILE_OPEN

 MPI_FILE_SET_VIEW

MPI_FILE_GET_BYTE_OFFSET

Chapter 3. MPI subroutines and functions 175

MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler

Purpose

Retrieves the error handler currently associated with a file handle.

C synopsis

#include <mpi.h>

int MPI_File_get_errhandler (MPI_File file,MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

MPI::Errhandler MPI::File::Get_errhandler() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_ERRHANDLER (INTEGER FILE,INTEGER ERRHANDLER,

 INTEGER IERROR)

Description

If fh is MPI_FILE_NULL, MPI_FILE_GET_ERRHANDLER returns, in errhandler, the

default file error handler currently assigned to the calling task. If fh is a valid file

handle, MPI_FILE_GET_ERRHANDLER returns, in errhandler, the error handler

currently associated with the file handle fh. Error handlers may be different at each

task.

Parameters

fh A file handle or MPI_FILE_NULL (handle) (IN)

errhandler

The error handler currently associated with fh or the current default file error

handler (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

At MPI_INIT time, the default file error handler is MPI_ERRORS_RETURN. You can

alter the default by calling the routine MPI_FILE_SET_ERRHANDLER and passing

MPI_FILE_NULL as the file handle parameter. Any program that uses

MPI_ERRORS_RETURN should check function return codes.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid file handle

fh must be a valid file handle or MPI_FILE_NULL.

Related information

 MPI_ERRHANDLER_FREE

 MPI_FILE_CALL_ERRHANDLER

MPI_FILE_GET_ERRHANDLER

176 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_CREATE_ERRHANDLER

 MPI_FILE_SET_ERRHANDLER

MPI_FILE_GET_ERRHANDLER

Chapter 3. MPI subroutines and functions 177

MPI_FILE_GET_GROUP, MPI_File_get_group

Purpose

Retrieves the group of tasks that opened the file.

C synopsis

#include <mpi.h>

int MPI_File_get_group (MPI_File fh,MPI_Group *group);

C++ synopsis

#include mpi.h

MPI::Group MPI::File::Get_group() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE GET_GROUP (INTEGER FH,INTEGER GROUP,INTEGER IERROR)

Description

MPI_FILE_GET_GROUP lets you retrieve in group the group of tasks that opened

the file referred to by fh. You are responsible for freeing group using

MPI_GROUP_FREE.

Parameters

fh The file handle (handle) (IN)

group

The group that opened the file handle (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Related information

 MPI_FILE_OPEN

 MPI_GROUP_FREE

MPI_FILE_GET_GROUP

178 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_INFO, MPI_File_get_info

Purpose

Returns a new Info object.

C synopsis

#include <mpi.h>

int MPI_File_get_info (MPI_File fh,MPI_Info *info_used);

C++ synopsis

#include mpi.h

MPI::Info MPI::File::Get_info() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_INFO (INTEGER FH,INTEGER INFO_USED,

 INTEGER IERROR)

Description

This subroutine creates a new Info object containing the file hints in effect for the

file referred to by fh, and returns its handle in info_used.

Use the MPI_INFO_FREE subroutine to free info_used.

Parameters

fh The file handle (handle) (IN)

info_used

The new Info object (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

You can specify file hints using the info parameter of these subroutines:

MPI_FILE_OPEN, MPI_FILE_SET_INFO, and MPI_FILE_SET_VIEW.

If the user does not specify any file hints, MPI will assign default values to file hints

it supports.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_FILE_GET_INFO

Chapter 3. MPI subroutines and functions 179

Related information

 MPI_FILE_OPEN

 MPI_FILE_SET_INFO

 MPI_FILE_SET_VIEW

 MPI_INFO_FREE

MPI_FILE_GET_INFO

180 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_POSITION, MPI_File_get_position

Purpose

Returns the current position of the individual file pointer relative to the current file

view.

C synopsis

#include <mpi.h>

int MPI_File_get_position(MPI_File fh,MPI_Offset *offset);

C++ synopsis

#include mpi.h

MPI::Offset MPI::File::Get_position() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_POSITION(INTEGER FH, INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 INTEGER IERROR)

Description

This subroutine returns, in offset, the current position of the individual file pointer

relative to the current file view, in elementary data type units.

Parameters

fh The file handle (handle) (IN).

offset

The offset of the individual file pointer (integer) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_FILE_GET_POSITION

Chapter 3. MPI subroutines and functions 181

MPI_FILE_GET_POSITION_SHARED, MPI_File_get_position_shared

Purpose

Returns the current position of the shared file pointer relative to the current file view.

C synopsis

#include <mpi.h>

int MPI_File_get_position_shared(MPI_File fh,MPI_Offset *offset);

C++ synopsis

#include mpi.h

MPI::Offset MPI::File::Get_position_shared() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_POSITION_SHARED(INTEGER FH, INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 INTEGER IERROR)

Description

This subroutine returns, in offset, the current position of the shared file pointer

relative to the current file view, in elementary data type units.

Parameters

fh The file handle (handle) (IN).

offset

The offset of the shared file pointer (integer) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

All tasks in the file group must use the same file view. MPI does not verify that file

views are identical.

The position returned may already be inaccurate at the time the subroutine returns

if other tasks are concurrently making calls that alter the shared file pointer. It is the

user’s responsibility to ensure that there are no race conditions between calls to this

subroutine and other calls that may alter the shared file pointer.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_FILE_GET_POSITION_SHARED

182 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_SIZE, MPI_File_get_size

Purpose

Retrieves the current file size.

C synopsis

#include <mpi.h>

int MPI_File_get_size (MPI_File fh,MPI_Offset *size);

C++ synopsis

#include mpi.h

MPI::Offset MPI::File::Get_size() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_SIZE (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE,

 INTEGER IERROR)

Description

MPI_FILE_GET_SIZE returns in size the current length in bytes of the open file

referred to by fh.

Parameters

fh The file handle (handle) (IN)

size

The size of the file in bytes (long long) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

You can alter the size of the file by calling the routine MPI_FILE_SET_SIZE. The

size of the file will also be altered when a write operation to the file results in adding

data beyond the current end of the file.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Internal fstat failed (MPI_ERR_IO)

An internal fstat operation on the file failed.

Related information

 MPI_FILE_IWRITE_AT

 MPI_FILE_SET_SIZE

MPI_FILE_GET_SIZE

Chapter 3. MPI subroutines and functions 183

MPI_FILE_WRITE_AT

 MPI_FILE_WRITE_AT_ALL

MPI_FILE_GET_SIZE

184 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_TYPE_EXTENT, MPI_File_get_type_extent

Purpose

Retrieves the extent of a data type.

C synopsis

#include <mpi.h>

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

 MPI_Aint *extent);

C++ synopsis

#include mpi.h

MPI::Aint MPI::File::Get_type_extent(const MPI::Datatype& datatype) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_TYPE_EXTENT (INTEGER FH, INTEGER DATATYPE,

 INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT,

 INTEGER IERROR)

Description

This subroutine retrieves (in extent) the extent of datatype in the current data

representation associated with the open file referred to by fh.

Parameters

fh The file handle (handle) (IN)

datatype

The data type (handle) (IN)

extent

The data type extent (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

MPI_FILE_GET_TYPE_EXTENT

Chapter 3. MPI subroutines and functions 185

Related information

 MPI_REGISTER_DATAREP

MPI_FILE_GET_TYPE_EXTENT

186 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_GET_VIEW, MPI_File_get_view

Purpose

Retrieves the current file view.

C synopsis

#include <mpi.h>

int MPI_File_get_view (MPI_File fh,MPI_Offset *disp,

 MPI_Datatype *etype,MPI_Datatype *filetype,char *datarep);

C++ synopsis

#include mpi.h

void MPI::File::Get_view(MPI::Offset& disp,MPI::Datatype& etype,

 MPI::Datatype& filetype, char* datarep) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_GET_VIEW (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP,

 INTEGER ETYPE,INTEGER FILETYPE,INTEGER DATAREP,INTEGER IERROR)

Description

MPI_FILE_GET_VIEW retrieves the current view associated with the open file

referred to by fh. The current view displacement is returned in disp. A reference to

the current elementary data type is returned in etype and a reference to the current

file type is returned in filetype. The current data representation is returned in

datarep. If etype and filetype are named types, they cannot be freed. If either one is

a user-defined types, it should be freed. Use MPI_TYPE_GET_ENVELOPE to

identify which types should be freed using MPI_TYPE_FREE. Freeing the

MPI_Datatype reference returned by MPI_FILE_GET_VIEW invalidates only this

reference.

Parameters

fh The file handle (handle) (IN)

disp

The displacement (long long) (OUT)

etype

The elementary data type (handle) (OUT).

filetype

The file type (handle) (OUT).

datarep

The data representation (string) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

1. The default view is associated with the file when the file is opened. This view

corresponds to a byte stream starting at file offset 0 (zero) and using the native

data representation, which is:

 disp equals 0(zero)

 etype equals MPI_BYTE

MPI_FILE_GET_VIEW

Chapter 3. MPI subroutines and functions 187

filetype equals MPI_BYTE

 datarep equals “native”

To alter the view of the file, you can call the routine MPI_FILE_SET_VIEW.

2. An MPI type constructor, such as MPI_TYPE_CONTIGUOUS, creates a data

type object within MPI and gives a handle for that object to the caller. This

handle represents one reference to the object. In PE MPI, the MPI data types

obtained with calls to MPI_TYPE_GET_VIEW are new handles for the existing

data type objects. The number of handles (references) given to the user is

tracked by a reference counter in the object. MPI cannot discard a data type

object unless MPI_TYPE_FREE has been called on every handle the user has

obtained.

The use of reference-counted objects is encouraged, but not mandated, by the

MPI standard. Another MPI implementation may create new objects instead.

The user should be aware of a side effect of the reference count approach.

Suppose aatype was created by a call to MPI_TYPE_VECTOR and used so

that a later call to MPI_TYPE_GET_VIEW returns its handle in bbtype. Because

both handles identify the same data type object, attribute changes made with

either handle are changes in the single object. That object will exist at least until

MPI_TYPE_FREE has been called on both aatype and bbtype. Freeing either

handle alone will leave the object intact and the other handle will remain valid.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Related information

 MPI_FILE_OPEN

 MPI_FILE_SET_VIEW

 MPI_TYPE_FREE

MPI_FILE_GET_VIEW

188 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_IREAD, MPI_File_iread

Purpose

Performs a nonblocking read operation.

C synopsis

#include <mpi.h>

int MPI_File_iread (MPI_File fh,void *buf, int count,

 MPI_Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::File::Iread(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_IREAD (INTEGER FH, CHOICE BUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_READ. It performs the

same function as MPI_FILE_READ, except it returns immediately and stores a

request handle in request. This request handle can be used to either test or wait for

the completion of the read operation, or it can be used to cancel the read operation.

The memory buffer buf cannot be accessed until the request has completed with a

completion subroutine call. Completion of the request guarantees that the read

operation is complete.

When MPI_FILE_IREAD completes, the actual number of bytes read is stored in

the completion subroutine’s status argument. If an error occurs during the read

operation, the error is returned by the completion subroutine through its return value

or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when all

requests complete successfully or when the first I/O request fails. In the latter case,

each element of the array_of_statuses argument is updated to contain

MPI_ERR_PENDING for each request that did not yet complete. The first error

determines the outcome of the entire completion subroutine, whether the error is on

a file request or a communication request. In other words, the error handler

associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

request

The request object (handle) (OUT).

MPI_FILE_IREAD

Chapter 3. MPI subroutines and functions 189

IERROR

The FORTRAN return code. It is always the last argument.

Notes

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The

eventual call to MPI_TEST_CANCELLED on the status will show that the cancel

was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument

causes PE MPI to skip filling in the status fields. By passing this value for status,

you can avoid having to allocate a status object in programs that do not need to

examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the

status argument of the completion subroutine is meaningless.

For more information, see “MPI_FILE_READ, MPI_File_read” on page 215.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Errors returned by the completion subroutine (MPI error class):

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

MPI_FILE_IREAD

190 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Related information

 MPI_CANCEL

 MPI_FILE_READ

 MPI_TEST

 MPI_WAIT

MPI_FILE_IREAD

Chapter 3. MPI subroutines and functions 191

MPI_FILE_IREAD_AT, MPI_File_iread_at

Purpose

Performs a nonblocking read operation using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_iread_at (MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::File::Iread_at(MPI::Offset offset, void* buf,

 int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_IREAD_AT (INTEGER FH,INTEGER (KIND=MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,

 INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_READ_AT. It performs the

same function as MPI_FILE_READ_AT, except it returns immediately and stores a

request handle in request. This request handle can be used to either test or wait for

the completion of the read operation, or it can be used to cancel the read operation.

The memory buffer buf cannot be accessed until the request has completed with a

completion subroutine call, such as MPI_TEST, MPI_WAIT, or one of the other MPI

test or wait functions. Completion of the request guarantees that the read operation

is complete.

When MPI_FILE_IREAD_AT completes, the actual number of bytes read is stored

in the completion subroutine’s status argument. If an error occurs during the read

operation, the error is returned by the completion subroutine through its return value

or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when all

requests complete successfully or when the first I/O request fails. In the latter case,

each element of the array_of_statuses argument is updated to contain

MPI_ERR_PENDING for each request that did not yet complete. The first error

determines the outcome of the entire completion subroutine, whether the error is on

a file request or a communication request. In other words, the error handler

associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (IN).

offset

The file offset (long long) (IN).

buf

The initial address of buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

MPI_FILE_IREAD_AT

192 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

datatype

The data type of each buffer element (handle) (IN).

request

The request object (handle) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The

eventual call to MPI_TEST_CANCELLED on the status will show that the cancel

was unsuccessful.

Note that when you specify a value for the offset argument, constants of the

appropriate type should be used. In FORTRAN, constants of type

INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument

causes PE MPI to skip filling in the status fields. By passing this value for status,

you can avoid having to allocate a status object in programs that do not need to

examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the

status argument of the completion subroutine is meaningless.

For more information, see “MPI_FILE_READ_AT, MPI_File_read_at” on page 223.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

MPI_FILE_IREAD_AT

Chapter 3. MPI subroutines and functions 193

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Errors returned by the completion subroutine (MPI error class):

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Related information

 MPI_CANCEL

 MPI_FILE_READ_AT

 MPI_TEST

 MPI_WAIT

MPI_FILE_IREAD_AT

194 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_IREAD_SHARED, MPI_File_iread_shared

Purpose

Performs a nonblocking read operation using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_iread_shared (MPI_File fh,void *buf, int count,

 MPI_Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::File::Iread_shared(void* buf, int count,

 const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_IREAD_SHARED (INTEGER FH, CHOICE BUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_READ_SHARED. It

performs the same function as MPI_FILE_READ_SHARED, except it returns

immediately and stores a request handle in request. This request handle can be

used to either test or wait for the completion of the read operation, or it can be used

to cancel the read operation. The memory buffer buf cannot be accessed until the

request has completed with a completion subroutine call, such as MPI_TEST,

MPI_WAIT, or one of the other MPI test or wait functions. Completion of the request

guarantees that the read operation is complete.

When MPI_FILE_IREAD_SHARED completes, the actual number of bytes read is

stored in the completion subroutine’s status argument. If an error occurs during the

read operation, the error is returned by the completion routine through its return

value or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when all

requests complete successfully or when the first I/O request fails. In the latter case,

each element of the array_of_statuses argument is updated to contain

MPI_ERR_PENDING for each request that did not yet complete. The first error

determines the outcome of the entire completion subroutine, whether the error is on

a file request or a communication request. In other words, the error handler

associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

MPI_FILE_IREAD_SHARED

Chapter 3. MPI subroutines and functions 195

request

The request object (handle) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The

eventual call to MPI_TEST_CANCELLED on the status will show that the cancel

was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument

causes PE MPI to skip filling in the status fields. By passing this value for status,

you can avoid having to allocate a status object in programs that do not need to

examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the

status argument of the completion subroutine is meaningless.

For more information, see “MPI_FILE_READ_SHARED, MPI_File_read_shared” on

page 239.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Errors returned by the completion subroutine (MPI error class):

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

MPI_FILE_IREAD_SHARED

196 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Related information

 MPI_CANCEL

 MPI_FILE_READ_SHARED

 MPI_TEST

 MPI_WAIT

MPI_FILE_IREAD_SHARED

Chapter 3. MPI subroutines and functions 197

MPI_FILE_IWRITE, MPI_File_iwrite

Purpose

Performs a nonblocking write operation.

C synopsis

#include <mpi.h>

int MPI_File_iwrite (MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::File::Iwrite(const void* buf, int count,

 const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_IWRITE(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_WRITE. It performs the

same function as MPI_FILE_WRITE, except it returns immediately and stores a

request handle in request. This request handle can be used to either test or wait for

the completion of the write operation or it can be used to cancel the write operation.

The memory buffer buf cannot be modified until the request has completed with a

completion subroutine call, such as MPI_TEST, MPI_WAIT, or one of the other MPI

test or wait functions.

When MPI_FILE_IWRITE completes, the actual number of bytes written is stored in

the completion subroutine’s status argument. If an error occurs during the write

operation, the error is returned by the completion subroutine through its return code

or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when all

requests complete successfully or when the first I/O request fails. In the latter case,

each element of the array_of_statuses argument is updated to contain

MPI_ERR_PENDING for each request that did not yet complete. The first error

determines the outcome of the entire completion subroutine whether the error is on

a file request or a communication request. In other words, the error handler

associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

MPI_FILE_IWRITE

198 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

request

The request object (handle) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Completion of the request does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The

eventual call to MPI_TEST_CANCELLED on the status will show that the cancel

was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument

causes PE MPI to skip filling in the status fields. By passing this value for status,

you can avoid having to allocate a status object in programs that do not need to

examine the status fields.

If an error occurs during the write operation, the number of bytes contained in the

status argument of the completion subroutine is meaningless.

For more information, see “MPI_FILE_WRITE, MPI_File_write” on page 257.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Errors returned by the completion subroutine (MPI error class):

MPI_FILE_IWRITE

Chapter 3. MPI subroutines and functions 199

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)

The file has reached the maximum size allowed.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Related information

 MPI_CANCEL

 MPI_FILE_WRITE

 MPI_TEST

 MPI_WAIT

MPI_FILE_IWRITE

200 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_IWRITE_AT, MPI_File_iwrite_at

Purpose

Performs a nonblocking write operation using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_iwrite_at (MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::File::Iwrite_at(MPI::Offset offset, const void* buf,

 int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_IWRITE_AT(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER REQUEST,

 INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_WRITE_AT. It performs the

same function as MPI_FILE_WRITE_AT, except it returns immediately and stores a

request handle in request. This request handle can be used to either test or wait for

the completion of the write operation or it can be used to cancel the write operation.

The memory buffer buf cannot be modified until the request has completed with a

completion subroutine call, such as MPI_TEST, MPI_WAIT, or one of the other MPI

test or wait functions.

When MPI_FILE_IWRITE_AT completes, the actual number of bytes written is

stored in the completion subroutine’s status argument. If an error occurs during the

write operation, the error is returned by the completion subroutine through its return

code or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when all

requests complete successfully or when the first I/O request fails. In the latter case,

each element of the array_of_statuses argument is updated to contain

MPI_ERR_PENDING for each request that did not yet complete. The first error

determines the outcome of the entire completion subroutine whether the error is on

a file request or a communication request. In other words, the error handler

associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (INOUT).

offset

The file offset (long long) (IN).

buf

The initial address of buffer (choice) (IN).

count

The number of elements in buffer (integer) (IN).

MPI_FILE_IWRITE_AT

Chapter 3. MPI subroutines and functions 201

datatype

The data type of each buffer element (handle) (IN).

request

The request object (handle) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Completion of the request does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The

eventual call to MPI_TEST_CANCELLED on the status will show that the cancel

was unsuccessful.

Note that when you specify a value for the offset argument, constants of the

appropriate type should be used. In FORTRAN, constants of type

INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument

causes PE MPI to skip filling in the status fields. By passing this value for status,

you can avoid having to allocate a status object in programs that do not need to

examine the status fields.

If an error occurs during the write operation, the number of bytes contained in the

status argument of the completion subroutine is meaningless.

For more information, see “MPI_FILE_WRITE_AT, MPI_File_write_at” on page 266.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

MPI_FILE_IWRITE_AT

202 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Errors returned by the completion subroutine (MPI error class):

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)

The file has reached the maximum size allowed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Related information

 MPI_FILE_CANCEL

 MPI_FILE_TEST

 MPI_FILE_WAIT

 MPI_FILE_WRITE_AT

MPI_FILE_IWRITE_AT

Chapter 3. MPI subroutines and functions 203

MPI_FILE_IWRITE_SHARED, MPI_File_iwrite_shared

Purpose

Performs a nonblocking write operation using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_iwrite_shared (MPI_File fh,void *buf, int count,

 MPI_Datatype datatype,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::File::Iwrite_shared(const void* buf, int count,

 const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_IWRITE_SHARED (INTEGER FH, CHOICE BUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_FILE_WRITE_SHARED. It

performs the same function as MPI_FILE_WRITE_SHARED, except it returns

immediately and stores a request handle in request. This request handle can be

used to either test or wait for the completion of the write operation, or it can be

used to cancel the write operation. The memory buffer buf cannot be modified until

the request has completed with a completion subroutine call, such as MPI_TEST,

MPI_WAIT, or one of the other MPI test or wait functions.

When MPI_FILE_IWRITE_SHARED completes, the actual number of bytes written

is stored in the completion subroutine’s status argument. If an error occurs during

the write operation, the error is returned by the completion routine through its return

value or in the appropriate element of the array_of_statuses argument.

If the completion subroutine is associated with multiple requests, it returns when all

requests complete successfully or when the first I/O request fails. In the latter case,

each element of the array_of_statuses argument is updated to contain

MPI_ERR_PENDING for each request that did not yet complete. The first error

determines the outcome of the entire completion subroutine, whether the error is on

a file request or a communication request. In other words, the error handler

associated with the first failing request is triggered.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

MPI_FILE_IWRITE_SHARED

204 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

request

The request object (handle) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Completion of the request does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

A valid call to MPI_CANCEL on the request will return MPI_SUCCESS. The

eventual call to MPI_TEST_CANCELLED on the status will show that the cancel

was unsuccessful.

Passing MPI_STATUS_IGNORE for the completion subroutine’s status argument

causes PE MPI to skip filling in the status fields. By passing this value for status,

you can avoid having to allocate a status object in programs that do not need to

examine the status fields.

If an error occurs during the read operation, the number of bytes contained in the

status argument of the completion subroutine is meaningless.

For more information, see “MPI_FILE_WRITE_SHARED, MPI_File_write_shared”

on page 282.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Errors returned by the completion subroutine (MPI error class):

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

MPI_FILE_IWRITE_SHARED

Chapter 3. MPI subroutines and functions 205

File too big (MPI_ERR_OTHER)

The file has reached the maximum size allowed.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Related information

 MPI_CANCEL

 MPI_FILE_WRITE_SHARED

 MPI_TEST

 MPI_WAIT

MPI_FILE_IWRITE_SHARED

206 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_OPEN, MPI_File_open

Purpose

Opens a file.

C synopsis

#include <mpi.h>

int MPI_File_open (MPI_Comm comm,char *filename,int amode,

 MPI_Info info, MPI_File *fh);

C++ synopsis

#include mpi.h

static MPI::File MPI::File::Open(const MPI::Intracomm& comm, const char* filename,

 int amode, const MPI::Info& info);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_OPEN(INTEGER COMM,CHARACTER FILENAME(*),INTEGER AMODE,

 INTEGER INFO,INTEGER FH,INTEGER IERROR)

Description

MPI_FILE_OPEN opens the file referred to by filename, sets the default view on the

file, and sets the access mode amode. MPI_FILE_OPEN returns a file handle fh

used for all subsequent operations on the file. The file handle fh remains valid until

the file is closed (MPI_FILE_CLOSE). The default view is similar to a linear byte

stream in the native representation starting at file offset 0. You can call

MPI_FILE_SET_VIEW to set a different view of the file. Though most I/O can be

done with the default file view, much of the optimization MPI-IO can provide

depends on the effective use of appropriate user-defined file views.

MPI_FILE_OPEN is a collective operation. comm must be a valid

intra-communicator. Values specified for amode by all participating tasks must be

identical. Participating tasks must refer to the same file through their own instances

of filename.

The following access modes (specified in amode), are supported:

 MPI_MODE_APPEND - set initial position of all file pointers to end of file

 MPI_MODE_CREATE - create the file if it does not exist

 MPI_MODE_DELETE_ON_CLOSE - delete file on close

 MPI_MODE_EXCL - raise an error if the file already exists and

MPI_MODE_CREATE is specified

 MPI_MODE_RDONLY - read only

 MPI_MODE_RDWR - reading and writing

 MPI_MODE_SEQUENTIAL - file will only be accessed sequentially

 MPI_MODE_UNIQUE_OPEN - file will not be concurrently opened elsewhere

 MPI_MODE_WRONLY - write only

MPI_MODE_UNIQUE_OPEN allows PE MPI-IO to use an optimization that is not

possible when a file may be shared by other jobs. The optimization is more likely to

help with read performance than with write performance. If it is known that the file

will not be shared, try using MPI_MODE_UNIQUE_OPEN.

In C and C++: You can use bit vector OR to combine these integer constants.

MPI_FILE_OPEN

Chapter 3. MPI subroutines and functions 207

In FORTRAN: You can use the bit vector IOR intrinsic to combine these integers. If

addition is used, each constant should appear only once.

File hints can be associated with a file when it is being opened. MPI_FILE_OPEN

ignores the hint value if it is not valid. Any Info key, value pair the user provides will

either be accepted or ignored. There will never be an error returned or change in

semantic as a result of a hint.

File Hints

This is a list of the supported file hints or info keys. There are restrictions on which

file hints can be used simultaneously, and on when and under what circumstances

a hint value can be set or used. In general, if a hint is specified in a circumstance

where it is not supported, it will be ignored. Use the MPI_FILE_GET_INFO routine

to verify the set of hints in effect for a file.

Hint name Description

filename

 Default value: The file name specified by MPI_FILE_OPEN.

 Valid values: Not applicable

 Subroutines you can use to set it: This hint cannot be set

with an Info object. The hint value is taken from the file name

specified by the filename parameter of the MPI_FILE_OPEN

subroutine.

 Value consistency requirement: Not applicable

 Notes: This hint can be retrieved only by the

MPI_FILE_GET_INFO subroutine.

file_perm

 Default value: 644 if specified by MPI_FILE_OPEN with a

mode of MPI_MODE_CREATE; otherwise, the value reflects the

access permissions associated with the file.

 Valid values: Octal values 000 through 777

 Subroutines you can use to set it: MPI_FILE_OPEN

 Value consistency requirement: Consistent values are

required at all participating tasks

 Notes:

This hint can be specified in the Info object when calling

MPI_FILE_OPEN with the mode MPI_MODE_CREATE enabled

in order to set the access permissions of the file to be created.

This hint can also be retrieved when the MPI_FILE_GET_INFO

subroutine is called, and its value then represents the access

permissions associated with the file.

The hint value is expressed as a three-digit octal number,

similar to the format used by the numeric mode of the chmod

shell command. The value is the sum of the following values:

400 permits read by owner

200 permits write by owner

100 permits execute by owner

040 permits read by group

020 permits write by group

010 permits execute by group

004 permits read by others

002 permits write by others

001 permits execute by others

MPI_FILE_OPEN

208 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

IBM_io_buffer_size

 Default value: number of bytes corresponding to 16 file blocks

 Valid values: any positive value up to 128 MB. The size can be

expressed either as a number of bytes, or as a number of

kilobytes (KB), using the letter K or k as the suffix, or as a

number of megabytes (MB), using the letter M or m as the suffix

 Subroutines you can use to set it: MPI_FILE_OPEN, or, if

there is no pending I/O operation: MPI_FILE_SET_INFO or

MPI_FILE_SET_VIEW

 Value consistency requirement: Consistent values are

required at all participating tasks

 Notes: This hint specifies the size that is used to stripe the file

across I/O agents in round-robin style. In general, one I/O agent

is associated with each MPI task. However, if the

MP_IONODEFILE environment variable or the poe -ionodefile

command is used, one I/O agent is associated with each task

running on any of the nodes specified in the file referred to by

MP_IONODEFILE or -ionodefile.

PE MPI rounds up the number of bytes specified to an integral

number of file blocks. The size of a file block is returned in the

st_blksize field of the struct stat argument passed to the stat or

fstat routine. For example, if IBM_io_buffer_size has a value of

23240, all data access operations on a file that belongs to a

GPFS file system with a block size of 16KB will be performed as

follows: the first 32KB of the file will be handled by the first I/O

agent, all data access operations to the next 32KB of the file will

be handled by the second I/O agent, and so on.

Increasing the IBM_io_buffer_size value can improve

performance when using large files, where large refers to

hundreds of megabytes, particularly if the program uses

collective data access operations.

This hint applies only when the IBM_largeblock_io hint has a

value of false. When IBM_largeblock_io is enabled, data striping

across I/O agents is not performed.

IBM_largeblock_io

 Default value: false

 Valid values: switchable, true, false

 Subroutines you can use to set it: MPI_FILE_OPEN, or, if

there is no pending I/O operation: MPI_FILE_SET_INFO or

MPI_FILE_SET_VIEW

 Value consistency requirement: Consistent values are

required at all participating tasks

 Notes: Examples of applications that should benefit from using

this hint are those in which each task accesses a large,

contiguous chunk of the file, or in which the file is divided into

distinct regions that are accessed by separate tasks. The hint

value switchable, which can be specified only when calling

MPI_FILE_OPEN, indicates that the hint value can be toggled

between true and false until the file is closed. If the hint is

specified as switchable on the call to MPI_FILE_OPEN, the

hint value is set to false and can be toggled on calls to

MPI_FILE_SET_INFO or MPI_FILE_SET_VIEW. If the hint is

specified as true or false on the call to MPI_FILE_OPEN, the

hint value cannot be changed by either MPI_FILE_SET_INFO or

MPI_FILE_SET_VIEW. This hint can be used only if all tasks

MPI_FILE_OPEN

Chapter 3. MPI subroutines and functions 209

are being used for I/O: either the MP_IONODEFILE

environment variable is not set, or it specifies a file that lists all

nodes on which the application is running. For JFS files, this

hint can be set only if all tasks are running on the same node.

IBM_sparse_access

Lets you specify the future file access pattern of the application for

the associated file. Specifically, you can specify whether the file

access requests from participating tasks are sparse (the value is

set to true) or dense (the value is set to false).

 Default value: false

 Valid values: true, false

 Subroutines you can use to set it: MPI_FILE_OPEN,

MPI_FILE_SET_INFO, MPI_FILE_SET_VIEW

 Value consistency requirement: Consistent values are

required at all participating tasks

 Notes: In cases where each single MPI collective read or write

operation touches most of the sections in a fairly large region of

a file, this hint will not help. In cases where the entire range of

each collective read or write is relatively small or, if the range is

large and only widely-separated bits of the file are touched, this

hint may improve performance. In this context, ″section″ refers

to either the default or explicitly set IBM_io_buffer_size and

″large″ begins somewhere near (IBM_io_buffer_size multiplied

by sizeof(MPI_ COMM_WORLD)).

Parameters

comm

The communicator (handle) (IN)

filename

The name of the file to open (string) (IN)

amode

The file access mode (integer) (IN)

info

The Info object (handle) (IN)

fh The new file handle (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

When you open a file, the atomicity is set to false.

If you call MPI_FINALIZE before all files are closed, an error will be raised on

MPI_COMM_WORLD.

Parameter consistency checking is performed only if the environment variable

MP_EUIDEVELOP is set to yes. If this variable is set and the amodes specified are

not identical, the error Inconsistent amodes will be raised on some tasks.

Similarly, if this variable is set and the file inodes associated with the file names are

not identical, the error Inconsistent file inodes will be raised on some tasks. In

either case, the error Consistency error occurred on another task will be raised

on the other tasks.

MPI_FILE_OPEN

210 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI-IO in PE MPI is targeted to the IBM General Parallel File System (GPFS) for

production use. File access through MPI-IO normally requires that a single GPFS

file system image be available across all tasks of an MPI job. PE MPI with MPI-IO

can be used for program development on any other file system that supports a

POSIX interface (AFS®, JFS, or NFS) as long as all tasks run on a single node or

workstation. This is not expected to be a useful model for production use of MPI-IO.

PE MPI can be used without all nodes on a single file system image by using the

MP_IONODEFILE environment variable. See IBM Parallel Environment: Operation

and Use, Volume 1 for information about MP_IONODEFILE.

When MPI-IO is used correctly, a file name will refer to the same file system at

every task. In one detectable error situation, a file will appear to be on different file

system types. For example, a particular file could be visible to some tasks as a

GPFS file and to others as NFS-mounted.

The default for MP_CSS_INTERRUPT is no. If you do not override the default,

MPI-IO enables interrupts while files are open. If you have forced interrupts to yes

or no, MPI-IO does not alter your selection.

MPI-IO depends on hidden threads that use MPI message passing. MPI-IO cannot

be used with MP_SINGLE_THREAD set to yes.

For AFS, and NFS, MPI-IO uses file locking for all accesses by default. If other

tasks on the same node share the file and also use file locking, file consistency is

preserved. If the MPI_FILE_OPEN is done with mode

MPI_MODE_UNIQUE_OPEN, file locking is not done.

Because the actual file I/O is carried out by agent threads spread across all tasks of

the job, hand-coded ″optimizations″ based on an assumption that I/O occurs at the

task making the MPI-IO call are more likely to do harm than good. If this kind of

optimization is done, set the IBM_largeblock_io hint to true. This will shut off the

shipping of data to agents and cause file I/O to be done by the calling task.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid communicator

comm is not a valid communicator.

Can’t use an inter-communicator

comm is an inter-communicator.

Conflicting collective operations on communicator

Internal stat failed (MPI_ERR_IO)

An internal stat operation on the file failed.

Returning errors (MPI error class):

Pathname too long (MPI_ERR_BAD_FILE)

File name must contain less than 1024 characters.

Invalid access mode (MPI_ERR_AMODE)

amode is not a valid access mode.

MPI_FILE_OPEN

Chapter 3. MPI subroutines and functions 211

|
|
|
|
|
|
|
|
|

|
|
|
|

Invalid file system type (MPI_ERR_OTHER)

filename refers to a file belonging to a file system of an unsupported type.

Invalid info (MPI_ERR_INFO)

info is not a valid Info object.

Invalid file handle

Locally detected error occurred on another task (MPI_ERR_ARG)

Local parameter check failed on other tasks.

Inconsistent file inodes (MPI_ERR_NOT_SAME)

Local filename corresponds to a file inode that is not consistent with that

associated with the filename of other tasks.

Inconsistent file system types (MPI_ERR_NOT_SAME)

Local file system type associated with filename is not identical to that of

other tasks.

Inconsistent amodes (MPI_ERR_NOT_SAME)

Local amode is not consistent with the amode of other tasks.

Consistency error occurred on another task (MPI_ERR_ARG)

Consistency check failed on other tasks.

Permission denied (MPI_ERR_ACCESS)

Access to the file was denied.

File already exists (MPI_ERR_FILE_EXISTS)

MPI_MODE_CREATE and MPI_MODE_EXCL are set and the file exists.

File or directory does not exist (MPI_ERR_NO_SUCH_FILE)

The file does not exist and MPI_MODE_CREATE is not set, or a directory

in the path does not exist.

Not enough space in file system (MPI_ERR_NO_SPACE)

The directory or the file system is full.

File is a directory (MPI_ERR_BAD_FILE)

The file is a directory.

Read-only file system (MPI_ERR_READ_ONLY)

The file resides in a read-only file system and write access is required.

Internal open failed (MPI_ERR_IO)

An internal open operation on the file failed.

Internal fstat failed (MPI_ERR_IO)

An internal fstat operation on the file failed.

Internal fstatvfs failed (MPI_ERR_IO)

An internal fstatvfs operation on the file failed.

Related information

 MPI_FILE_CLOSE

 MPI_FILE_SET_VIEW

 MPI_FINALIZE

MPI_FILE_OPEN

212 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_PREALLOCATE, MPI_File_preallocate

Purpose

Ensures that storage space is allocated for the first size bytes of the file associated

with fh.

C synopsis

#include <mpi.h>

int MPI_File_preallocate (MPI_File fh, MPI_Offset size);

C++ synopsis

#include mpi.h

void MPI::File::Preallocate(MPI::Offset size);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_PREALLOCATE(INTEGER FH, INTEGER SIZE, INTEGER IERROR)

Description

This subroutine ensures that storage space is allocated for the first size bytes of the

file associated with fh. MPI_FILE_PREALLOCATE is collective; all tasks in the

group must pass identical values for size. Regions of the file that have previously

been written are unaffected. For newly-allocated regions of the file,

MPI_FILE_PREALLOCATE has the same effect as writing undefined data. If size is

larger than the current file size, the file size increases to size. If size is less than or

equal to the current file size, the file size is unchanged. The treatment of file

pointers, pending nonblocking accesses, and file consistency, is the same as with

MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when the

file was opened, it is erroneous to call this subroutine.

Parameters

fh The file handle (handle) (INOUT)

size

The size to preallocate the file (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

GPFS handles this operation efficiently; this may not be true for other file systems.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning Errors:

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_FILE_PREALLOCATE

Chapter 3. MPI subroutines and functions 213

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Pending I/O operations (MPI_ERR_OTHER)

There are pending I/O operations.

Invalid file size (MPI_ERR_ARG)

size is a negative value.

Locally detected error occurred on another task (MPI_ERR_OTHER)

A local parameter check failed on one or more other tasks.

Inconsistent file sizes (MPI_ERR_NOT_SAME)

The local size is not consistent with the file size on other tasks.

Consistency error occurred on another task (MPI_ERR_OTHER)

A consistency check failed on one or more other tasks.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Internal gpfs_prealloc failed (MPI_ERR_IO)

An internal gpfs_prealloc operation on the file failed.

Internal fstat failed (MPI_ERR_IO)

An internal fstat operation failed.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Related information

 MPI_FILE_SET_SIZE

MPI_FILE_PREALLOCATE

214 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ, MPI_File_read

Purpose

Reads from a file.

C synopsis

#include <mpi.h>

int MPI_File_read (MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype,

 MPI::Status& status);

#include mpi.h

void MPI::File::Read(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine tries to read, from the file referred to by fh, count items of type

datatype into the buffer buf, starting at the current file location as determined by the

value of the individual file pointer. The call returns only when data is available in

buf. status contains the number of bytes successfully read. You can use accessor

functions MPI_GET_COUNT and MPI_GET_ELEMENTS to extract from status the

number of items and the number of intrinsic MPI elements successfully read,

respectively. You can check for a read beyond the end-of-file condition by

comparing the number of items requested with the number of items actually read.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

MPI_FILE_READ

Chapter 3. MPI subroutines and functions 215

If an error is raised, the number of bytes contained in the status argument is

meaningless.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IREAD

 MPI_FILE_READ_ALL

 MPI_FILE_READ_ALL_BEGIN

 MPI_FILE_READ_ALL_END

MPI_FILE_READ

216 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_ALL, MPI_File_read_all

Purpose

Reads from a file collectively.

C synopsis

#include <mpi.h>

int MPI_File_read_all (MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read_all(void* buf, int count, const MPI::Datatype& datatype,

 MPI::Status& status);

#include mpi.h

void MPI::File::Read_all(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_ALL(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is the collective version of MPI_FILE_READ. It performs the same

function as MPI_FILE_READ. The number of bytes actually read by the calling task

is stored in status. The call returns when the data requested by the calling task is

available in buf. The call does not wait for accesses from other tasks associated

with the file handle fh to have data available in their buffers.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is

meaningless.

MPI_FILE_READ_ALL

Chapter 3. MPI subroutines and functions 217

For more information, see “MPI_FILE_READ, MPI_File_read” on page 215.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IREAD

 MPI_FILE_READ

 MPI_FILE_READ_ALL_BEGIN

 MPI_FILE_READ_ALL_END

MPI_FILE_READ_ALL

218 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_ALL_BEGIN, MPI_File_read_all_begin

Purpose

Initiates a split collective read operation from a file.

C synopsis

#include <mpi.h>

int MPI_File_read_all_begin (MPI_File fh, void *buf, int count,

 MPI_Datatype datatype);

C++ synopsis

#include mpi.h

void MPI::File::Read_all_begin(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_ALL_BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the

matching end subroutine (MPI_FILE_READ_ALL_END), produces an equivalent

result to that of the collective routine MPI_FILE_READ_ALL.

This subroutine returns immediately.

Begin operations are collective over the group of tasks that participated in the

collective open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer

passed to a begin subroutine while the operation is outstanding. The operation must

be completed with an end subroutine before it is safe to access, reuse, or free the

buffer.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

MPI_FILE_READ_ALL_BEGIN

Chapter 3. MPI subroutines and functions 219

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective read operation, an

MPI_FILE_READ_ALL on one task does not match an

MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END pair on another

task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Related information

 MPI_FILE_READ_ALL

 MPI_FILE_READ_ALL_END

MPI_FILE_READ_ALL_BEGIN

220 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_ALL_END, MPI_File_read_all_end

Purpose

Completes a split collective read operation from a file.

C synopsis

#include <mpi.h>

int MPI_File_read_all_end(MPI_File fh,void *buf,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read_all_end(void* buf);

#include mpi.h

void MPI::File::Read_all_end(void* buf, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_ALL_END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS_SIZE),

 INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching

begin subroutine (MPI_FILE_READ_ALL_BEGIN). Combined with the begin routine,

it produces an equivalent result to that of the collective routine

MPI_FILE_READ_ALL.

End calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations. Each end call matches

the preceding begin call for the same collective operation. When an end call is

made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the data to be read is available in the user’s

buffer. The call does not wait for accesses from other tasks associated with the file

handle to have data available in their user’s buffers.

The number of bytes actually read by the calling task is stored in status.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

MPI_FILE_READ_ALL_END

Chapter 3. MPI subroutines and functions 221

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective read operation, an

MPI_FILE_READ_ALL on one task does not match an

MPI_FILE_READ_ALL_BEGIN and MPI_FILE_READ_ALL_END pair on another

task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)

The end phase of a split collective data access operation is attempted while

there is no pending split collective data access operation.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

 MPI_FILE_READ_ALL

 MPI_FILE_READ_ALL_BEGIN

MPI_FILE_READ_ALL_END

222 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_AT, MPI_File_read_at

Purpose

Reads from a file using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_read_at (MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,

 const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Read_at(MPI::Offset offset, void* buf, int count,

 const MPI::Datatype& datatype, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_AT(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine tries to read, from the file referred to by fh, count items of type

datatype into the buffer buf, starting at offset, relative to the current view. The call

returns only when data is available in buf. status contains the number of bytes

successfully read. You can use accessor functions MPI_GET_COUNT and

MPI_GET_ELEMENTS to extract from status the number of items and the number

of intrinsic MPI elements successfully read, respectively. You can check for a read

beyond the end of file condition by comparing the number of items requested with

the number of items actually read.

Parameters

fh The file handle (handle) (IN).

offset

The file offset (long long) (IN).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

MPI_FILE_READ_AT

Chapter 3. MPI subroutines and functions 223

Notes

When you specify a value for the offset argument, constants of the appropriate type

should be used. In FORTRAN, constants of type INTEGER(KIND=8) should be

used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is

meaningless.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

MPI_FILE_READ_AT

224 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_FILE_IREAD_AT

 MPI_FILE_READ_AT_ALL

 MPI_FILE_READ_AT_ALL_BEGIN

 MPI_FILE_READ_AT_ALL_END

MPI_FILE_READ_AT

Chapter 3. MPI subroutines and functions 225

MPI_FILE_READ_AT_ALL, MPI_File_read_at_all

Purpose

Reads from a file collectively using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_read_at_all (MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,

 const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Read_at_all(MPI::Offset offset, void* buf, int count,

 const MPI::Datatype& datatype, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_AT_ALL(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is the collective version of MPI_FILE_READ_AT. It performs the

same function as MPI_FILE_READ_AT. The number of bytes actually read by the

calling task is returned in status. The call returns when the data requested by the

calling task is available in buf. The call does not wait for accesses from other tasks

associated with the file handle fh to have data available in their buffers.

Parameters

fh The file handle (handle) (IN).

offset

The file offset (long long) (IN).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

When you specify a value for the offset argument, constants of the appropriate type

should be used. In FORTRAN, constants of type INTEGER(KIND=8) should be

used, for example, 45_8.

MPI_FILE_READ_AT_ALL

226 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

For more information, see “MPI_FILE_READ_AT, MPI_File_read_at” on page 223.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IREAD_AT

 MPI_FILE_READ_AT

MPI_FILE_READ_AT_ALL

Chapter 3. MPI subroutines and functions 227

MPI_FILE_READ_AT_ALL_BEGIN

 MPI_FILE_READ_AT_ALL_END

MPI_FILE_READ_AT_ALL

228 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_AT_ALL_BEGIN, MPI_File_read_at_all_begin

Purpose

Initiates a split collective read operation from a file using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_read_at_all_begin(MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype);

C++ synopsis

#include mpi.h

void MPI::File::Read_at_all_begin(MPI::Offset offset, void* buf, int count,

 const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_AT_ALL_BEGIN(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the

matching end subroutine (MPI_FILE_READ_AT_ALL_END), produces an equivalent

result to that of the collective routine MPI_FILE_READ_AT_ALL.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer

passed to a begin subroutine while the operation is outstanding. The operation must

be completed with an end subroutine before it is safe to access, reuse, or free the

buffer.

Parameters

fh The file handle (handle) (IN).

offset

The file offset (integer) (IN).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

MPI_FILE_READ_AT_ALL_BEGIN

Chapter 3. MPI subroutines and functions 229

Notes

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective read operation, an

MPI_FILE_READ_AT_ALL on one task does not match an

MPI_FILE_READ_AT_ALL_BEGIN and MPI_FILE_READ_AT_ALL_END pair on

another task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Related information

 MPI_FILE_READ_AT_ALL

 MPI_FILE_READ_AT_ALL_END

MPI_FILE_READ_AT_ALL_BEGIN

230 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_AT_ALL_END, MPI_File_read_at_all_end

Purpose

Completes a split collective read operation from a file.

C synopsis

#include <mpi.h>

int MPI_File_read_at_all_end(MPI_File fh,void *buf,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read_at_all_end(void *buf, MPI::Status& status);

#include mpi.h

void MPI::File::Read_at_all_end(void *buf);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_AT_ALL_END(INTEGER FH,CHOICE BUF,

 INTEGER STATUS(MPI_STATUS_SIZE),

 INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching

begin subroutine (MPI_FILE_READ_AT_ALL_BEGIN). Combined with the begin

subroutine, it produces an equivalent result to that of the collective routine

MPI_FILE_READ_AT_ALL.

End calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations. Each end operation

matches the preceding begin call for the same collective operation. When an end

call is made, exactly one unmatched begin call for the same operation must

precede it.

This subroutine returns only when the data to be read is available in the user’s

buffer. The operation does not wait for accesses from other tasks associated with

the file handle to have data available in their user’s buffers.

The number of bytes actually read by the calling task is stored in status.

Parameters

fh The file handle (handle) (IN).

buf

The initial address of the buffer (choice) (OUT).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

MPI_FILE_READ_AT_ALL_END

Chapter 3. MPI subroutines and functions 231

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective read operation, an

MPI_FILE_READ_AT_ALL on one task does not match an

MPI_FILE_READ_AT_ALL_BEGIN and MPI_FILE_READ_AT_ALL_END pair on

another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

 MPI_FILE_READ_AT_ALL

 MPI_FILE_READ_AT_ALL_BEGIN

MPI_FILE_READ_AT_ALL_END

232 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_ORDERED, MPI_File_read_ordered

Purpose

Reads from a file collectively using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read_ordered(void* buf, int count, const MPI::Datatype& datatype,

 MPI::Status& status);

#include mpi.h

void MPI::File::Read_ordered(void* buf, int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_ORDERED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is a collective version of MPI_FILE_READ_SHARED. It performs

the same function as MPI_FILE_READ_SHARED, except that it behaves as if the

operations were initiated by the participating tasks in rank order. The number of

bytes actually read by the calling task is stored in status. The call returns only when

data requested by the calling task is available in buf, disregarding data accesses

from other tasks associated with file handle fh.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is

meaningless.

MPI_FILE_READ_ORDERED

Chapter 3. MPI subroutines and functions 233

For more information, see “MPI_FILE_READ_SHARED, MPI_File_read_shared” on

page 239.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IREAD_SHARED

 MPI_FILE_READ_ORDERED_BEGIN

 MPI_FILE_READ_ORDERED_END

 MPI_FILE_READ_SHARED

MPI_FILE_READ_ORDERED

234 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_ORDERED_BEGIN, MPI_File_read_ordered_begin

Purpose

Initiates a split collective read operation from a file using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype);

C++ synopsis

#include mpi.h

void MPI::File::Read_ordered_begin(void* buf, int count,

 const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_ORDERED_BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the

matching end subroutine (MPI_FILE_READ_ORDERED_END), produces an

equivalent result to that of the collective routine MPI_FILE_READ_ORDERED.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer

passed to a begin subroutine while the operation is outstanding. The operation must

be completed with an end subroutine before it is safe to access, reuse, or free the

buffer.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

MPI_FILE_READ_ORDERED_BEGIN

Chapter 3. MPI subroutines and functions 235

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective read operation, an

MPI_FILE_READ_ORDERED on one task does not match an

MPI_FILE_READ_ORDERED_BEGIN and MPI_FILE_READ_ORDERED_END pair

on another task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Related information

 MPI_FILE_READ_ORDERED

 MPI_FILE_READ_ORDERED_END

MPI_FILE_READ_ORDERED_BEGIN

236 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_ORDERED_END, MPI_File_read_ordered_end

Purpose

Completes a split collective read operation from a file using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_read_ordered_end(MPI_File fh,void *buf,MPI_Status *status)

C++ synopsis

#include mpi.h

void MPI::File::Read_ordered_end(void* buf, MPI::Status& status);

#include mpi.h

void MPI::File::Read_ordered_end(void* buf);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_ORDERED_END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS_SIZE),

 INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching

begin subroutine (MPI_FILE_READ_ORDERED_BEGIN). Combined with the begin

subroutine, it produces an equivalent result to that of the collective routine

MPI_FILE_READ_ORDERED.

End calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations. Each end call matches

the preceding begin call for the same collective operation. When an end call is

made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the data to be read is available in the user’s

buffer. The call does not wait for accesses from other tasks associated with the file

handle to have data available in their user’s buffers.

The number of bytes actually read by the calling task is stored in status.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

MPI_FILE_READ_ORDERED_END

Chapter 3. MPI subroutines and functions 237

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective read operation, an

MPI_FILE_READ_ORDERED on one task does not match an

MPI_FILE_READ_ORDERED_BEGIN and MPI_FILE_READ_ORDERED_END pair

on another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)

The end phase of a split collective data access operation is attempted while

there is no pending split collective data access operation.

Invalid status ignore value

Related information

 MPI_FILE_READ_ORDERED

 MPI_FILE_READ_ORDERED_BEGIN

MPI_FILE_READ_ORDERED_END

238 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_READ_SHARED, MPI_File_read_shared

Purpose

Reads from a file using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_read_shared (MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Read_shared(void* buf, int count, const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Read_shared(void* buf, int count, const MPI::Datatype& datatype,

 MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_READ_SHARED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine tries to read, from the file referred to by fh, count items of type

datatype into the buffer buf, starting at the current file location as determined by the

value of the shared file pointer. The call returns only when data is available in buf.

status contains the number of bytes successfully read. You can use accessor

functions MPI_GET_COUNT and MPI_GET_ELEMENTS to extract from status the

number of items and the number of intrinsic MPI elements successfully read,

respectively. You can check for a read beyond the end-of-file condition by

comparing the number of items requested with the number of items actually read.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (OUT).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

MPI_FILE_READ_SHARED

Chapter 3. MPI subroutines and functions 239

If an error is raised, the number of bytes contained in the status argument is

meaningless.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal read failed (MPI_ERR_IO)

An internal read operation failed.

Read conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the read operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IREAD_SHARED

 MPI_FILE_READ_ORDERED

 MPI_FILE_READ_ORDERED_BEGIN

 MPI_FILE_READ_ORDERED_END

MPI_FILE_READ_SHARED

240 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_SEEK, MPI_File_seek

Purpose

Sets a file pointer.

C synopsis

#include <mpi.h>

int MPI_File_seek (MPI_File fh,MPI_Offset offset, int whence);

C++ synopsis

#include mpi.h

void MPI::File::Seek(MPI::Offset offset, int whence);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SEEK (INTEGER FH, INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 INTEGER WHENCE, INTEGER IERROR)

Description

This subroutine updates the individual file pointer according to whence, which can

have one of the following values:

MPI_SEEK_CUR

the file pointer is set to its current position plus offset

MPI_SEEK_END

the file pointer is set to the end of the file position plus offset

MPI_SEEK_SET

the file pointer is set to offset

The offset can be negative, which allows to seek backwards. However, it is

erroneous to seek to a negative position in the current file view. A seek past the end

of the file is valid.

Parameters

fh The file handle (handle) (INOUT).

offset

The file offset (integer) (IN).

whence

The update mode (state) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

MPI_FILE_SEEK

Chapter 3. MPI subroutines and functions 241

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Invalid whence (MPI_ERR_ARG)

whence must be MPI_SEEK_CUR, MPI_SEEK_END, or MPI_SEEK_SET

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Related information

 MPI_FILE_READ

 MPI_FILE_SEEK_SHARED

 MPI_FILE_WRITE

MPI_FILE_SEEK

242 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_SEEK_SHARED, MPI_File_seek_shared

Purpose

Sets a shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_seek_shared(MPI_File fh,MPI_Offset offset,int whence);

C++ synopsis

#include mpi.h

void MPI::File::Seek_shared(MPI::Offset offset, int whence);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SEEK_SHARED(INTEGER FH, INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 INTEGER WHENCE, INTEGER IERROR)

Description

This subroutine updates the shared file pointer according to whence, which can

have one of the following values:

MPI_SEEK_CUR

the file pointer is set to its current position plus offset

MPI_SEEK_END

the file pointer is set to the end of the file position plus offset

MPI_SEEK_SET

the file pointer is set to offset

This is a collective operation. All participating tasks must specify the same values

for offset and whence. The offset can be negative, which allows to seek backwards.

However, it is erroneous to seek to a negative position in the current file view. A

seek past the end of the file is valid.

Parameters

fh The file handle (handle) (INOUT).

offset

The file offset (integer) (IN).

whence

The update mode (state) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The position set may already be outdated at the time the subroutine returns if other

tasks are concurrently making calls that alter the shared file pointer. It is the user’s

responsibility to ensure that there are no race conditions between calls to this

subroutine and other calls that may alter the shared file pointer.

MPI_FILE_SEEK_SHARED

Chapter 3. MPI subroutines and functions 243

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Invalid whence (MPI_ERR_ARG)

whence must be MPI_SEEK_CUR, MPI_SEEK_END, or MPI_SEEK_SET

Inconsistent offsets (MPI_ERR_NOT_SAME)

Local offset is not consistent with neighbor’s offset.

Inconsistent whences (MPI_ERR_NOT_SAME)

Local whence is not consistent with neighbor’s whence.

Consistency error occurred on another task (MPI_ERR_ARG)

Consistency check failed on other tasks.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Related information

 MPI_FILE_READ_SHARED

 MPI_FILE_SEEK

 MPI_FILE_WRITE_SHARED

MPI_FILE_SEEK_SHARED

244 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_SET_ATOMICITY, MPI_File_set_atomicity

Purpose

Modifies the current atomicity mode for an opened file.

C synopsis

#include <mpi.h>

int MPI_File_set_atomicity (MPI_File fh,int flag);

C++ synopsis

#include mpi.h

void MPI::File::Set_atomicity(bool flag);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SET_ATOMICITY (INTEGER FH,LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine modifies the current atomicity mode for an opened file. This is a

collective operation. All participating tasks must specify the same value for flag.

Parameters

fh The file handle (handle) (INOUT)

flag

Set to true if atomic mode, false if nonatomic mode (logical) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

When you open a file, the atomicity is set to false.

Reading or writing a file in atomic mode can have a substantial negative impact on

performance. Use atomic mode only when it is essential.

Parameter consistency checking is performed only if the environment variable

MP_EUIDEVELOP is set to yes. If this variable is set and the flags specified are

not identical, the error Inconsistent flags will be raised on some tasks and the

error Consistency error occurred on another task will be raised on the other

tasks.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_FILE_SET_ATOMICITY

Chapter 3. MPI subroutines and functions 245

Inconsistent flags (MPI_ERR_NOT_SAME)

Local flag is not consistent with neighbor’s flag.

Related information

 MPI_FILE_GET_ATOMICITY

 MPI_FILE_OPEN

MPI_FILE_SET_ATOMICITY

246 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler

Purpose

Associates a new error handler to a file.

C synopsis

#include <mpi.h>

int MPI_File_set_errhandler (MPI_File fh,

 MPI_Errhandler errhandler);

C++ synopsis

#include mpi.h

void MPI::File::Set_errhandler(const MPI::Errhandler& errhandler);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SET_ERRHANDLER(INTEGER FH,INTEGER ERRHANLDER,

 INTEGER IERROR)

Description

MPI_FILE_SET_ERRHANDLER associates a new error handler to a file. If fh is

equal to MPI_FILE_NULL, then MPI_FILE_SET_ERRHANDLER defines the new

default file error handler on the calling task to be error handler errhandler. If fh is a

valid file handle, this subroutine associates the error handler errhandler with the file

referred to by fh.

Parameters

fh The valid file handle (handle) (IN)

errhandler

The new error handler for the opened file (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The error Invalid error handler is raised if errhandler was created with any error

handler create routine other than MPI_FILE_CREATE_ERRHANDLER. You can

associate the predefined error handlers, MPI_ERRORS_ARE_FATAL and

MPI_ERRORS_RETURN, as well as the implementation-specific

MPE_ERRORS_WARN, with file handles.

For information about a predefined error handler for C++, see IBM Parallel

Environment: MPI Programming Guide.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid file handle

fh must be a valid file handle or MPI_FILE_NULL.

MPI_FILE_SET_ERRHANDLER

Chapter 3. MPI subroutines and functions 247

Invalid error handler

errhandler must be a valid error handler.

Related information

 MPI_ERRHANDLER_FREE

 MPI_FILE_CALL_ERRHANDLER

 MPI_FILE_CREATE_ERRHANDLER

 MPI_FILE_GET_ERRHANDLER

MPI_FILE_SET_ERRHANDLER

248 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_SET_INFO, MPI_File_set_info

Purpose

Specifies new hints for an open file.

C synopsis

#include <mpi.h>

int MPI_File_set_info (MPI_File fh,MPI_Info info);

C++ synopsis

#include mpi.h

void MPI::File::Set_info(const MPI::Info& info);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SET_INFO(INTEGER FH,INTEGER INFO,INTEGER IERROR)

Description

This subroutine associates legitimate file-related hints contained in the Info

argument with the file referred to by fh. This is a collective operation. If I/O

operations are pending on fh, hint values are ignored.

MPI_FILE_SET_INFO ignores the hint value if it is not valid. Any Info key, value

pair the user provides will either be accepted or ignored. There will never be an

error returned or change in semantic as a result of a hint.

See subroutine “MPI_FILE_OPEN, MPI_File_open” on page 207 for a list of

supported file hints.

Parameters

fh The file handle (handle) (INOUT)

info

The Info object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid info (MPI_ERR_INFO)

info is not a valid Info object.

MPI_FILE_SET_INFO

Chapter 3. MPI subroutines and functions 249

Related information

 MPI_FILE_GET_INFO

 MPI_FILE_OPEN

 MPI_FILE_SET_VIEW

MPI_FILE_SET_INFO

250 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_SET_SIZE, MPI_File_set_size

Purpose

Expands or truncates an open file.

C synopsis

#include <mpi.h>

int MPI_File_set_size (MPI_File fh,MPI_Offset size);

C++ synopsis

#include mpi.h

void MPI::File::Set_size(MPI::Offset size);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SET_SIZE (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) SIZE,

 INTEGER IERROR)

Description

MPI_FILE_SET_SIZE is a collective operation that lets you expand or truncate the

open file referred to by fh. All participating tasks must specify the same value for

size. If I/O operations are pending on fh, an error is returned to the participating

tasks and the file is not resized.

If size is larger than the current file size, the file length is increased to size and a

read of unwritten data in the extended area returns zeros. However, file blocks are

not allocated in the extended area. If size is smaller than the current file size, the

file is truncated at the position defined by size. File blocks located beyond this point

are de-allocated.

Parameters

fh The file handle (handle) (INOUT)

size

The requested size of the file after truncation or expansion (long long) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Note that when you specify a value for the size argument, constants of the

appropriate type should be used. In FORTRAN, constants of type

INTEGER(KIND=8) should be used, for example, 45_8.

Parameter consistency checking is performed only if the environment variable

MP_EUIDEVELOP is set to yes. If this variable is set and the sizes specified are

not identical, the error Inconsistent file sizes will be raised on some tasks, and the

error Consistency error occurred on another task will be raised on the other

tasks.

MPI_FILE_SET_SIZE

Chapter 3. MPI subroutines and functions 251

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Pending I/O operations (MPI_ERR_OTHER)

There are pending I/O operations.

Locally detected error occurred on another task (MPI_ERR_ARG)

Local parameter check failed on other tasks.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid file size (MPI_ERR_ARG)

Local size is negative

Inconsistent file sizes (MPI_ERR_NOT_SAME)

Local size is not consistent with the file size of other tasks.

Consistency error occurred on another task (MPI_ERR_ARG)

Consistency check failed on other tasks.

Internal ftruncate failed (MPI_ERR_IO)

An internal ftruncate operation on the file failed.

Related information

 MPI_FILE_GET_SIZE

 MPI_FILE_PREALLOCATE

MPI_FILE_SET_SIZE

252 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_SET_VIEW, MPI_File_set_view

Purpose

Associates a new view with the open file.

C synopsis

#include <mpi.h>

int MPI_File_set_view (MPI_File fh,MPI_Offset disp,

 MPI_Datatype etype,MPI_Datatype filetype,

 char *datarep,MPI_Info info);

C++ synopsis

#include mpi.h

void MPI::File::Set_view(MPI::Offset disp, const MPI::Datatype& etype,

 const MPI::Datatype& filetype, const char* datarep,

 const MPI::Info& info);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SET_VIEW (INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) DISP,

 INTEGER ETYPE,INTEGER FILETYPE,CHARACTER DATAREP(*),INTEGER INFO,

 INTEGER IERROR)

Description

This subroutine associates a new view defined by disp, etype, filetype, and

datarep with the open file referred to by fh. This is a collective operation. All

participating tasks must specify the same values for datarep and the same extents

for etype.

There are no further restrictions on etype and filetype, except those referred to in

the MPI-2 standard. No checking is performed on the validity of these data types. If

I/O operations are pending on fh, an error is returned to the participating tasks and

the new view is not associated with the file.

The effective use of MPI_FILE_SET_VIEW by each task of a file group can be

critical to obtaining the performance benefits of MPI-IO. When the tasks each set a

file view that is complementary to the views set by other tasks and use collective

MPI-IO operations in conjunction with these views, the MPI library has the

information that will allow it to optimize the I/O. Without the information available in

the file view settings, fewer opportunities for optimization by MPI-IO exist.

Valid values for datarep are:

external32

States that read and write operations convert all data from and to the

external32 representation that is documented in the MPI-2 standard.

internal

Can be used for I/O operations in a homogeneous or heterogeneous

environment. IBM has defined its internal format with the intent that any

implementation of MPI provided by IBM can use this format.

Note: For IBM implementations of MPI, the internal data representation is

interpreted as one which allows a file generated on one IBM platform

to be read on another without discarding precision. The intent of the

MPI_FILE_SET_VIEW

Chapter 3. MPI subroutines and functions 253

internal data representation on IBM platforms is essentially

external64, but because the MPI standard does not currently define

external64, you cannot be certain that IBM internal will exactly match

external64 when, or if, it is defined.

For applications that do not require file portability, use the native data

representation because internal adds data conversion overhead for

certain MPI data types. The data types that incur overhead depends

on the particular platform's native data representations.

native Should be used in most situations. Data in this representation is stored in a

file exactly as it is in memory. This representation is always suitable in a

homogeneous MPI environment and does not incur conversion costs.

File hints can be associated with a file when a view is set on it.

MPI_FILE_SET_VIEW ignores the hint value if it is not valid. Any Info key, value

pair the user provides will either be accepted or ignored. There will never be an

error returned or change in semantic as a result of a hint.

See “MPI_FILE_OPEN, MPI_File_open” on page 207 for a list of supported file

hints.

Parameters

fh The file handle (handle) (IN).

disp

The displacement (long long) (IN).

etype

The elementary data type (handle) (IN).

filetype

The filetype (handle) (IN).

datarep

The data representation (string) (IN).

info

The Info object (handle) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Note that when you specify a value for the disp argument, constants of the

appropriate type should be used. In FORTRAN, constants of type

INTEGER(KIND=8) should be used, for example, 45_8.

It is expected that a call to MPI_FILE_SET_VIEW will immediately follow

MPI_FILE_OPEN in many instances.

Parameter consistency checking is performed only if the environment variable

MP_EUIDEVELOP is set to yes. If this variable is set and the extents of the

elementary data types specified are not identical, the error Inconsistent

elementary datatypes will be raised on some tasks and the error Consistency

error occurred on another task will be raised on the other tasks.

MPI_FILE_SET_VIEW

254 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid displacement (MPI_ERR_ARG)

Invalid displacement.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

Either etype or filetype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

etype or filetype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

etype or filetype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

Both etype or filetype must be committed.

Invalid data representation (MPI_ERR_UNSUPPORTED_DATAREP)

datarep is not a valid data representation.

Invalid info (MPI_ERR_INFO)

info is not a valid Info object.

Pending I/O operations (MPI_ERR_OTHER)

There are pending I/O operations.

Locally detected error occurred on another task (MPI_ERR_ARG)

Local parameter check failed on other tasks.

Inconsistent elementary datatypes (MPI_ERR_NOT_SAME)

Local etype extent is not consistent with the elementary data type extent of

other tasks.

Consistency error occurred on another task (MPI_ERR_ARG)

Consistency check failed on other tasks.

Related information

 MPI_FILE_GET_VIEW

MPI_FILE_SET_VIEW

Chapter 3. MPI subroutines and functions 255

MPI_FILE_SYNC, MPI_File_sync

Purpose

Commits file updates of an open file to one or more storage devices.

C synopsis

#include <mpi.h>

int MPI_File_sync (MPI_File fh);

C++ synopsis

#include mpi.h

void MPI::File::Sync();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_SYNC (INTEGER FH,INTEGER IERROR)

Description

MPI_FILE_SYNC is a collective operation. It forces the updates to the file referred

to by fh to be propagated to the storage device (or devices) before it returns. If I/O

operations are pending on fh, an error is returned to the participating tasks and no

sync operation is performed on the file.

Parameters

fh The file handle (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Pending I/O operations (MPI_ERR_OTHER)

There are pending I/O operations.

Locally detected error occurred on another task (MPI_ERR_ARG)

Local parameter check failed on other tasks.

Internal fsync failed (MPI_ERR_IO)

An internal fsync operation failed.

MPI_FILE_SYNC

256 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_WRITE, MPI_File_write

Purpose

Writes to a file.

C synopsis

#include <mpi.h>

int MPI_File_write (MPI_File fh,,void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Write(const void* buf, int count, const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Write(const void* buf, int count, const MPI::Datatype& datatype,

 MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine tries to write, into the file referred to by fh, count items of type

datatype out of the buffer buf, starting at the current file location as determined by

the value of the individual file pointer. MPI_FILE_WRITE returns when it is safe to

reuse buf. status contains the number of bytes successfully written. You can use

accessor functions MPI_GET_COUNT and MPI_GET_ELEMENTS to extract from

status the number of items and the number of intrinsic MPI elements successfully

written, respectively.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

MPI_FILE_WRITE

Chapter 3. MPI subroutines and functions 257

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)

The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IWRITE

 MPI_FILE_WRITE_ALL

 MPI_FILE_WRITE_ALL_BEGIN

 MPI_FILE_WRITE_ALL_END

MPI_FILE_WRITE

258 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_WRITE_ALL, MPI_File_write_all

Purpose

Writes to a file collectively.

C synopsis

#include <mpi.h>

int MPI_File_write_all (MPI_File fh,,void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Write_all(const void* buf, int count,

 const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Write_all(const void* buf, int count,

 const MPI::Datatype& datatype, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_ALL(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is the collective version of MPI_FILE_WRITE. It performs the same

function as MPI_FILE_WRITE. MPI_FILE_WRITE_ALL tries to write, into the file

referred to by fh, count items of type datatype out of the buffer buf, starting at the

current file location as determined by the value of the individual file pointer.

MPI_FILE_WRITE returns when it is safe to reuse buf. status contains the number

of bytes successfully written. You can use accessor functions MPI_GET_COUNT

and MPI_GET_ELEMENTS to extract from status the number of items and the

number of intrinsic MPI elements successfully written, respectively.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

MPI_FILE_WRITE_ALL

Chapter 3. MPI subroutines and functions 259

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

For more information, “MPI_FILE_WRITE, MPI_File_write” on page 257.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)

The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

MPI_FILE_WRITE_ALL

260 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_FILE_IWRITE

 MPI_FILE_WRITE

 MPI_FILE_WRITE_ALL_BEGIN

 MPI_FILE_WRITE_ALL_END

MPI_FILE_WRITE_ALL

Chapter 3. MPI subroutines and functions 261

MPI_FILE_WRITE_ALL_BEGIN, MPI_File_write_all_begin

Purpose

Initiates a split collective write operation to a file.

C synopsis

#include <mpi.h>

int MPI_File_write_all_begin (MPI_File fh, void *buf, int count,

 MPI_Datatype datatype);

C++ synopsis

#include mpi.h

void MPI::File::Write_all_begin(const void* buf, int count,

 const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_ALL_BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the

matching end subroutine (MPI_FILE_WRITE_ALL_END), produces an equivalent

result to that of the collective routine MPI_FILE_WRITE_ALL.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer

passed to a begin subroutine while the operation is outstanding. The operation must

be completed with an end subroutine before it is safe to access, reuse, or free the

buffer.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

MPI_FILE_WRITE_ALL_BEGIN

262 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective write operation, an

MPI_FILE_WRITE_ALL on one task does not match an

MPI_FILE_WRITE_ALL_BEGIN and MPI_FILE_WRITE_ALL_END pair on another

task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Related information

 MPI_FILE_WRITE

 MPI_FILE_WRITE_ALL

 MPI_FILE_WRITE_ALL_END

MPI_FILE_WRITE_ALL_BEGIN

Chapter 3. MPI subroutines and functions 263

MPI_FILE_WRITE_ALL_END, MPI_File_write_all_end

Purpose

Completes a split collective write operation to a file.

C synopsis

#include <mpi.h>

int MPI_File_write_all_end(MPI_File fh,void *buf,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Write_all_end(void* buf);

#include mpi.h

void MPI::File::Write_all_end(void* buf, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_ALL_END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS_SIZE)

 INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching

begin subroutine (MPI_FILE_WRITE_ALL_BEGIN). Combined with the begin

routine, it produces an equivalent result to that of the collective routine

MPI_FILE_WRITE_ALL.

End calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations. Each end call matches

the preceding begin call for the same collective operation. When an end call is

made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the user’s buffer that contains the data to be

written can be modified safely.

The number of bytes actually written by the calling task is stored in status.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

Only one split collective operation can be active on any given file handle.

MPI_FILE_WRITE_ALL_END

264 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective write operation, an

MPI_FILE_WRITE_ALL on one task does not match an

MPI_FILE_WRITE_ALL_BEGIN and MPI_FILE_WRITE_ALL_END pair on another

task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)

The end phase of a split collective data access operation is attempted while

there is no pending split collective data access operation.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_WRITE

 MPI_FILE_WRITE_ALL

 MPI_FILE_WRITE_ALL_BEGIN

MPI_FILE_WRITE_ALL_END

Chapter 3. MPI subroutines and functions 265

MPI_FILE_WRITE_AT, MPI_File_write_at

Purpose

Performs a blocking write operation using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_write_at (MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Write_at(MPI::Offset offset, const void* buf,

 int count, const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Write_at(MPI::Offset offset, const void* buf,

 int count, const MPI::Datatype& datatype,

 MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_AT(INTEGER FH,INTEGER(KIND_MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),

 INTEGER IERROR)

Description

MPI_FILE_WRITE_AT tries to write into the file referred to by fh count items of type

datatype out of the buffer buf, starting at offset and relative to the current view.

MPI_FILE_WRITE_AT returns when it is safe to reuse buf. status contains the

number of bytes successfully written and accessor functions MPI_GET_COUNT and

MPI_GET_ELEMENTS allow you to extract from status the number of items and the

number of intrinsic MPI elements successfully written, respectively.

Parameters

fh The file handle (handle) (INOUT).

offset

The file offset (long long) (IN).

buf

The initial address of buffer (choice) (IN).

count

The number of elements in buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

MPI_FILE_WRITE_AT

266 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

Note that when you specify a value for the offset argument, constants of the

appropriate type should be used. In FORTRAN, constants of type

INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset(MPI_ERR_ARG)

offset is not a valid offset.

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

File too big (MPI_ERR_IO)

The file has reached the maximum size allowed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

MPI_FILE_WRITE_AT

Chapter 3. MPI subroutines and functions 267

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IWRITE

 MPI_FILE_WRITE_AT_ALL

 MPI_FILE_WRITE_AT_ALL_BEGIN

 MPI_FILE_WRITE_AT_ALL_END

MPI_FILE_WRITE_AT

268 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_all

Purpose

Performs a blocking write operation collectively using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_write_at_all (MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,

 int count, const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Write_at_all(MPI::Offset offset, const void* buf,

 int count, const MPI::Datatype& datatype,

 MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_AT_ALL (INTEGER FH,

 INTEGER (KIND=MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is the collective version of MPI_FILE_WRITE_AT. The number of

bytes actually written by the calling task is stored in status. The call returns when

the calling task can safely reuse buf. It does not wait until the storing buffers in

other participating tasks can safely be reused.

Parameters

fh The file handle (handle) (INOUT).

offset

The file offset (long long) (IN).

buf

The initial address of buffer (choice) (IN).

count

The number of elements in buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

MPI_FILE_WRITE_AT_ALL

Chapter 3. MPI subroutines and functions 269

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

Note that when you specify a value for the offset argument, constants of the

appropriate type should be used. In FORTRAN, constants of type

INTEGER(KIND=8) should be used, for example, 45_8.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in status is meaningless.

For more information, see “MPI_FILE_WRITE_AT, MPI_File_write_at” on page 266.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

MPI_FILE_WRITE_AT_ALL

270 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

File too big (MPI_ERR_IO)

The file has reached the maximum size allowed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IWRITE_AT

 MPI_FILE_WRITE_AT

 MPI_FILE_WRITE_AT_ALL_BEGIN

 MPI_FILE_WRITE_AT_ALL_END

MPI_FILE_WRITE_AT_ALL

Chapter 3. MPI subroutines and functions 271

MPI_FILE_WRITE_AT_ALL_BEGIN, MPI_File_write_at_all_begin

Purpose

Initiates a split collective write operation to a file using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_write_at_all_begin(MPI_File fh,MPI_Offset offset,void *buf,

 int count,MPI_Datatype datatype);

C++ synopsis

#include mpi.h

void MPI::File::Write_at_all_begin(MPI::Offset offset, const void* buf,

 int count, const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_AT_ALL_BEGIN(INTEGER FH,INTEGER(KIND=MPI_OFFSET_KIND) OFFSET,

 CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the

matching end subroutine (MPI_FILE_WRITE_AT_ALL_END), produces an

equivalent result to that of the collective routine MPI_FILE_WRITE_AT_ALL.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer

passed to a begin subroutine while the operation is outstanding. The operation must

be completed with an end subroutine before it is safe to access, reuse, or free the

buffer.

Parameters

fh The file handle (handle) (INOUT).

offset

The file offset (integer) (IN).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

MPI_FILE_WRITE_AT_ALL_BEGIN

272 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Notes

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective write operation, an

MPI_FILE_WRITE_AT_ALL on one task does not match an

MPI_FILE_WRITE_AT_ALL_BEGIN and MPI_FILE_WRITE_AT_ALL_END pair on

another task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid offset (MPI_ERR_ARG)

offset is not a valid offset.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Unsupported operation on sequential access file

(MPI_ERR_UNSUPPORTED_OPERATION)

MPI_MODE_SEQUENTIAL was set when the file was opened.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Related information

 MPI_FILE_WRITE

 MPI_FILE_WRITE_AT

 MPI_FILE_WRITE_AT_ALL

 MPI_FILE_WRITE_AT_ALL_END

MPI_FILE_WRITE_AT_ALL_BEGIN

Chapter 3. MPI subroutines and functions 273

MPI_FILE_WRITE_AT_ALL_END, MPI_File_write_at_all_end

Purpose

Completes a split collective write operation to a file using an explicit offset.

C synopsis

#include <mpi.h>

int MPI_File_write_at_all_end(MPI_File fh,void *buf,MPI_Status *status)

C++ synopsis

#include mpi.h

void MPI::File::Write_at_all_end(const void* buf);

#include mpi.h

void MPI::File::Write_at_all_end(const void* buf, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_AT_ALL_END(INTEGER FH,CHOICE BUF,

 INTEGER STATUS(MPI_STATUS_SIZE),

 INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching

begin subroutine (MPI_FILE_WRITE_AT_ALL_BEGIN). Combined with the begin

subroutine, it produces an equivalent result to that of the collective routine

MPI_FILE_WRITE_AT_ALL.

End calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations. Each end call matches

the preceding begin call for the same collective operation. When an end call is

made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the user’s buffer that contains the data to be

written can be modified safely.

The number of bytes actually written by the calling task is stored in status.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

MPI_FILE_WRITE_AT_ALL_END

274 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Only one split collective operation can be active on any given file handle.

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective write operation, an

MPI_FILE_WRITE_AT_ALL on one task does not match an

MPI_FILE_WRITE_AT_ALL_BEGIN and MPI_FILE_WRITE_AT_ALL_END pair on

another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)

The end phase of a split collective data access operation is attempted while

there is no pending split collective data access operation.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_WRITE

 MPI_FILE_WRITE_AT

 MPI_FILE_WRITE_AT_ALL

 MPI_FILE_WRITE_AT_ALL_BEGIN

MPI_FILE_WRITE_AT_ALL_END

Chapter 3. MPI subroutines and functions 275

MPI_FILE_WRITE_ORDERED, MPI_File_write_ordered

Purpose

Writes to a file collectively using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_write_ordered(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Write_ordered(const void* buf, int count,

 const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Write_ordered(const void* buf, int count,

 const MPI::Datatype& datatype,

 MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_ORDERED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is a collective version of MPI_FILE_WRITE_SHARED. It performs

the same function as MPI_FILE_WRITE_SHARED, except that it behaves as if the

operations were initiated by the participating tasks in rank order. The number of

bytes actually written by the calling task is stored in status. The call returns only

when the calling task can safely reuse buf, disregarding data accesses from other

tasks associated with file handle fh.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

MPI_FILE_WRITE_ORDERED

276 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is

meaningless.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)

The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IWRITE_SHARED

 MPI_FILE_WRITE_ORDERED_BEGIN

 MPI_FILE_WRITE_ORDERED_END

 MPI_FILE_WRITE_SHARED

MPI_FILE_WRITE_ORDERED

Chapter 3. MPI subroutines and functions 277

MPI_FILE_WRITE_ORDERED_BEGIN, MPI_File_write_ordered_begin

Purpose

Initiates a split collective write operation to a file using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_write_ordered_begin(MPI_File fh, void *buf, int count,

 MPI_Datatype datatype);

C++ synopsis

#include mpi.h

void MPI::File::Write_ordered_begin(const void* buf, int count,

 const MPI::Datatype& datatype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_ORDERED_BEGIN (INTEGER FH, CHOICE BUF, INTEGER COUNT,

 INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine initiates a split collective operation that, when completed by the

matching end subroutine (MPI_FILE_WRITE_ORDERED_END), produces an

equivalent result to that of the collective routine MPI_FILE_WRITE_ORDERED.

This subroutine returns immediately.

Begin calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations.

As with any nonblocking data access operation, the user must not use the buffer

passed to a begin subroutine while the operation is outstanding. The operation must

be completed with an end subroutine before it is safe to access, reuse, or free the

buffer.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Only one split collective operation can be active on any given file handle.

MPI_FILE_WRITE_ORDERED_BEGIN

278 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective write operation, an

MPI_FILE_WRITE_ORDERED on one task does not match an

MPI_FILE_WRITE_ORDERED_BEGIN and MPI_FILE_WRITE_ORDERED_END

pair on another task.

The begin and end subroutines must be called from the same thread.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in write-only mode.

Pending split collective data access operation (MPI_ERR_OTHER)

A collective data access operation is attempted while there is a pending

split collective data access operation on the same file handle.

Related information

 MPI_FILE_WRITE_ORDERED

 MPI_FILE_WRITE_ORDERED_END

 MPI_FILE_WRITE_SHARED

MPI_FILE_WRITE_ORDERED_BEGIN

Chapter 3. MPI subroutines and functions 279

MPI_FILE_WRITE_ORDERED_END, MPI_File_write_ordered_end

Purpose

Completes a split collective write operation to a file using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_write_ordered_end(MPI_File fh,void *buf,MPI_Status *status

C++ synopsis

#include mpi.h

void MPI::File::Write_ordered_end(const void* buf);

#include mpi.h

void MPI::File::Write_ordered_end(const void* buf, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_ORDERED_END(INTEGER FH,CHOICE BUF,INTEGER STATUS(MPI_STATUS_SIZE),

 INTEGER IERROR)

Description

This subroutine ends a split collective operation that was initiated by the matching

begin subroutine (MPI_FILE_WRITE_ORDERED_BEGIN). Combined with the begin

subroutine, it produces an equivalent result to that of the collective routine

MPI_FILE_WRITE_ORDERED.

End calls are collective over the group of tasks that participated in the collective

open and follow the ordering rules for collective operations. Each end call matches

the preceding begin call for the same collective operation. When an end call is

made, exactly one unmatched begin call for the same operation must precede it.

This subroutine returns only when the user’s buffer that contains the data to be

written can be modified safely.

The number of bytes actually written by the calling task is stored in status.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

Only one split collective operation can be active on any given file handle.

MPI_FILE_WRITE_ORDERED_END

280 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

A file handle that is being used in a split collective operation cannot be used for a

blocking collective operation.

Split collective operations do not inter-operate with the corresponding regular

collective operation. For example, in a single collective write operation, an

MPI_FILE_WRITE_ORDERED on one task does not match an

MPI_FILE_WRITE_ORDERED_BEGIN and MPI_FILE_WRITE_ORDERED_END

pair on another task.

The begin and end subroutines must be called from the same thread.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

No pending split collective data access operation (MPI_ERR_OTHER)

The end phase of a split collective data access operation is attempted while

there is no pending split collective data access operation.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_WRITE_ORDERED

 MPI_FILE_WRITE_ORDERED_BEGIN

 MPI_FILE_WRITE_SHARED

MPI_FILE_WRITE_ORDERED_END

Chapter 3. MPI subroutines and functions 281

MPI_FILE_WRITE_SHARED, MPI_File_write_shared

Purpose

Writes to a file using the shared file pointer.

C synopsis

#include <mpi.h>

int MPI_File_write_shared (MPI_File fh, void *buf, int count,

 MPI_Datatype datatype,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::File::Write_shared(const void* buf, int count,

 const MPI::Datatype& datatype);

#include mpi.h

void MPI::File::Write_shared(const void* buf, int count,

 const MPI::Datatype& datatype,

 MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FILE_WRITE_SHARED(INTEGER FH,CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine tries to write, into the file referred to by fh, count items of type

datatype out of the buffer buf, starting at the current file location as determined by

the value of the shared file pointer. The call returns only when it is safe to reuse

buf. status contains the number of bytes successfully written. You can use accessor

functions MPI_GET_COUNT and MPI_GET_ELEMENTS to extract from status the

number of items and the number of intrinsic MPI elements successfully written,

respectively.

Parameters

fh The file handle (handle) (INOUT).

buf

The initial address of the buffer (choice) (IN).

count

The number of elements in the buffer (integer) (IN).

datatype

The data type of each buffer element (handle) (IN).

status

The status object (Status) (OUT).

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Return from the call does not guarantee that the data has been written to the

storage device (or devices). In particular, written data may still be present in system

buffers. However, it guarantees that the memory buffer can be safely reused.

MPI_FILE_WRITE_SHARED

282 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

If an error is raised, the number of bytes contained in the status argument is

meaningless.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Returning errors (MPI error class):

Invalid file handle (MPI_ERR_FILE)

fh is not a valid file handle.

Invalid count (MPI_ERR_COUNT)

count is not a valid count.

MPI_DATATYPE_NULL not valid (MPI_ERR_TYPE)

datatype has already been freed.

Undefined datatype (MPI_ERR_TYPE)

datatype is not a defined data type.

Invalid datatype (MPI_ERR_TYPE)

datatype can be neither MPI_LB nor MPI_UB.

Uncommitted datatype (MPI_ERR_TYPE)

datatype must be committed.

Not enough space in file system (MPI_ERR_NO_SPACE)

The file system on which the file resides is full.

File too big (MPI_ERR_OTHER)

The file has reached the maximum size allowed.

Permission denied (MPI_ERR_ACCESS)

The file was opened in read-only mode.

Internal lseek failed (MPI_ERR_IO)

An internal lseek operation failed.

Internal write failed (MPI_ERR_IO)

An internal write operation failed.

Write conversion error (MPI_ERR_CONVERSION)

The conversion attempted during the write operation failed.

Invalid status ignore value

Related information

 MPI_FILE_IWRITE_SHARED

 MPI_FILE_WRITE_ORDERED

 MPI_FILE_WRITE_ORDERED_BEGIN

 MPI_FILE_WRITE_ORDERED_END

MPI_FILE_WRITE_SHARED

Chapter 3. MPI subroutines and functions 283

MPI_FINALIZE, MPI_Finalize

Purpose

Terminates all MPI processing.

C synopsis

#include <mpi.h>

int MPI_Finalize(void);

C++ synopsis

#include mpi.h

void MPI::Finalize();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FINALIZE(INTEGER IERROR)

Description

Make sure this subroutine is the last MPI call. Any MPI calls made after

MPI_FINALIZE raise an error. You must be sure that all pending communications

involving a task have completed before the task calls MPI_FINALIZE. You must also

be sure that all files opened by MPI_FILE_OPEN have been closed before the task

calls MPI_FINALIZE.

Although MPI_FINALIZE terminates MPI processing, it does not terminate the task.

It is possible to continue with nonMPI processing after calling MPI_FINALIZE, but

no other MPI calls (including MPI_INIT) can be made.

In a threads environment, both MPI_INIT and MPI_FINALIZE must be called on the

same thread. MPI_FINALIZE closes the communication library and terminates the

service threads. It does not affect any threads you created, other than returning an

error if one subsequently makes an MPI call. If you had registered a SIGIO handler,

it is restored as a signal handler; however, the SIGIO signal is blocked when

MPI_FINALIZE returns. If you want to catch SIGIO after MPI_FINALIZE has been

called, you should unblock it.

At MPI_FINALIZE there is now an implicit MPI_COMM_FREE of

MPI_COMM_SELF. Because MPI_COMM_SELF cannot have been freed by user

code and cannot be used after MPI_FINALIZE, there is no direct effect of this

change. The value of this implicit free is that any attribute that a user may attach to

MPI_COMM_SELF will be deleted in MPI_FINALIZE and its attribute delete function

called. A library layered on MPI can take advantage of this to force its own cleanup

code to run whenever MPI_FINALIZE gets called. This is done by packaging the

cleanup logic as an attribute delete function and attaching an attribute to

MPI_COMM_SELF. It is legitimate to make MPI calls in the attribute callbacks and a

call to MPI_FINALIZED inside a delete function will report that MPI is still active.

If an attribute delete function returns a nonzero return code, the code it does return

is passed to the error handler associated with MPI_COMM_WORLD. The default

handler, MPI_ERROR_ARE_FATAL, will embed the error code in the message it

prints. If there is a returning error handler on MPI_COMM_WORLD, MPI_FINALIZE

will return a code indicating that a delete callback failed. MPI_FINALIZE does not

return the error return code issued by the delete function.

MPI_FINALIZE

284 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Parameters

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPI standard does not specify the state of MPI tasks after MPI_FINALIZE,

therefore, an assumption that all tasks continue may not be portable. If

MPI_BUFFER_ATTACH has been used and MPI_BUFFER_DETACH has been not

called, there will be an implicit MPI_BUFFER_DETACH within MPI_FINALIZE. See

“MPI_BUFFER_DETACH, MPI_Buffer_detach” on page 90.

Errors

MPI_COMM_SELF attribute delete function returned error

MPI already finalized

MPI not initialized

Related information

 MPI_ABORT

 MPI_BUFFER_DETACH

 MPI_INIT

MPI_FINALIZE

Chapter 3. MPI subroutines and functions 285

MPI_FINALIZED, MPI_Finalized

Purpose

Returns true if MPI_FINALIZE has completed.

C synopsis

#include <mpi.h>

int MPI_Finalized(int *flag);

C++ synopsis

#include mpi.h

bool MPI::Is_finalized();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FINALIZED(LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine returns true if MPI_FINALIZE has completed. It is legal to call

MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE.

Parameters

flag

Set to true if MPI is finalized (logical) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Once MPI has been finalized, it is no longer active and cannot be restarted. A

library layered on top of MPI needs to be able to determine this to act accordingly.

MPI is ″active″ and it is thus safe to call MPI functions if MPI_INIT has completed

and MPI_FINALIZE has not completed. If a library has no other way of knowing

whether MPI is active or not, it can use MPI_INITIALIZED and MPI_FINALIZED to

determine this. For example, MPI is still ″active″ in callback functions that are

invoked during the MPI_FINALIZE actions to free MPI_COMM_SELF.

Errors

MPI already finalized

MPI not initialized

Related information

 MPI_FINALIZE

 MPI_INIT

 MPI_INITIALIZED

MPI_FINALIZED

286 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_FREE_MEM, MPI_Free_mem

Purpose

Frees a block of storage.

C synopsis

#include <mpi.h>

int MPI_Free_mem (void *base);

C++ synopsis

#include mpi.h

void MPI::Free_mem(void *base):

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_FREE_MEM(CHOICE BASE, INTEGER IERROR)

Description

This subroutine frees a block of storage previously allocated by the

MPI_ALLOC_MEM routine and pointed to by the base argument. Undefined results

occur if the base argument is not a pointer to a block of storage that is currently

allocated.

Parameters

base

The initial address of the memory segment allocated by MPI_ALLOC_MEM

(choice) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized (MPI_ERR_OTHER)

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_ALLOC_MEM

MPI_FREE_MEM

Chapter 3. MPI subroutines and functions 287

MPI_GATHER, MPI_Gather

Purpose

Collects individual messages from each task in comm at the root task.

C synopsis

#include <mpi.h>

int MPI_Gather(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int recvcount,MPI_Datatype recvtype,int root,

 MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Gather(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype, void* recvbuf,

 int recvcount, const MPI::Datatype& recvtype,

 int root) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GATHER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,

 INTEGER COMM,INTEGER IERROR)

Description

This subroutine collects individual messages from each task in comm at the root

task and stores them in rank order.

The type signature of sendcount, sendtype on task i must be equal to the type

signature of recvcount, recvtype at the root. This means the amount of data sent

must be equal to the amount of data received, pair-wise between each task and the

root. Distinct type maps between sender and receiver are allowed.

The following information applies to MPI_GATHER arguments and tasks:

v On the task root, all arguments to the function are significant.

v On other tasks, only the arguments sendbuf, sendcount, sendtype, root, and

comm are significant.

v The argument root must be the same on all tasks.

Note that the argument revcount at the root indicates the number of items it

receives from each task. It is not the total number of items received.

A call where the specification of counts and types causes any location on the root

to be written more than once is erroneous.

The ″in place″ option for intra-communicators is specified by passing

MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and

sendtype are ignored, and the contribution of the root to the gathered vector is

assumed to be already in the correct place in the receive buffer.

If comm is an inter-communicator, the call involves all tasks in the

inter-communicator, but with one group (group A) defining the root task. All tasks in

the other group (group B) pass the same value in root, which is the rank of the root

in group A. The root passes the value MPI_ROOT in root. All other tasks in group A

MPI_GATHER

288 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

pass the value MPI_PROC_NULL in root. Data is gathered from all tasks in group B

to the root. The send buffer arguments of the tasks in group B must be consistent

with the receive buffer argument of the root.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements in the send buffer (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

recvbuf

The address of the receive buffer (choice, significant only at root) (OUT)

recvcount

The number of elements for any single receive (integer, significant only at root)

(IN)

recvtype

The data type of the receive buffer elements (handle, significant only at root)

(IN)

root

The rank of the receiving task (integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid communicator

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid root

MPI_GATHER

Chapter 3. MPI subroutines and functions 289

For an intra-communicator: root < 0 or root >= groupsize

 For an inter-communicator: root < 0 and is neither MPI_ROOT nor

MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message length

Related information

 MPE_IGATHER

 MPI_ALLGATHER

 MPI_GATHER

 MPI_SCATTER

MPI_GATHER

290 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GATHERV, MPI_Gatherv

Purpose

Collects individual messages from each task in comm at the root task. Messages

can have different sizes and displacements.

C synopsis

#include <mpi.h>

int MPI_Gatherv(void* sendbuf,int sendcount,MPI_Datatype sendtype,

 void* recvbuf,int *recvcounts,int *displs,MPI_Datatype recvtype,

 int root,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Gatherv(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype, void* recvbuf,

 const int recvcounts[], const int displs[],

 const MPI::Datatype& recvtype, int root) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GATHERV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 CHOICE RECVBUF,INTEGER RECVCOUNTS(*),INTEGER DISPLS(*),

 INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

Description

This subroutine collects individual messages from each task in comm at the root

task and stores them in rank order. With recvcounts as an array, messages can

have varying sizes, and displs allows you the flexibility of where the data is placed

on the root.

The type signature of sendcount, sendtype on task i must be equal to the type

signature of recvcounts[i], recvtype at the root. This means the amount of data sent

must be equal to the amount of data received, pair-wise between each task and the

root. Distinct type maps between sender and receiver are allowed.

The following is information regarding MPI_GATHERV arguments and tasks:

v On the task root, all arguments to the function are significant.

v On other tasks, only the arguments. sendbuf, sendcount, sendtype, root, and

comm are significant.

v The argument root must be the same on all tasks.

A call where the specification of sizes, types, and displacements causes any

location on the root to be written more than once is erroneous.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

sendcount

The number of elements in the send buffer (integer) (IN)

sendtype

The data type of the send buffer elements (handle) (IN)

MPI_GATHERV

Chapter 3. MPI subroutines and functions 291

recvbuf

The address of the receive buffer (choice, significant only at root) (OUT)

recvcounts

An integer array (of length groupsize) that contains the number of elements

received from each task (significant only at root) (IN)

displs

An integer array (of length groupsize). Entry i specifies the displacement relative

to recvbuf at which to place the incoming data from task i (significant only at

root) (IN)

recvtype

The data type of the receive buffer elements (handle, significant only at root)

(IN)

root

The rank of the receiving task (integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Displacements are expressed as elements of type recvtype, not as bytes.

The ″in place″ option for intra-communicators is specified by passing

MPI_IN_PLACE as the value of sendbuf at the root. In such a case, sendcount and

sendtype are ignored, and the contribution of the root to the gathered vector is

assumed to be already in the correct place in the receive buffer.

If comm is an inter-communicator, the call involves all tasks in the

inter-communicator, but with one group (group A) defining the root task. All tasks in

the other group (group B) pass the same value in root, which is the rank of the root

in group A. The root passes the value MPI_ROOT in root. All other tasks in group A

pass the value MPI_PROC_NULL in root. Data is gathered from all tasks in group B

to the root. The send buffer arguments of the tasks in group B must be consistent

with the receive buffer argument of the root.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid communicator

MPI_GATHERV

292 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid root

 For an intra-communicator: root < 0 or root >= groupsize

 For an inter-communicator: root < 0 and is neither MPI_ROOT nor

MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Related information

 MPE_IGATHER

 MPI_GATHER

MPI_GATHERV

Chapter 3. MPI subroutines and functions 293

MPI_GET, MPI_Get

Purpose

Transfers data from a window at the target task to the origin task.

C synopsis

#include <mpi.h>

int MPI_Get (void *origin_addr, int origin_count,

 MPI_Datatype origin_datatype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_datatype, MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Get(void* origin_addr, int origin_count,

 const MPI::Datatype& origin_datatype, int target_rank,

 MPI::Aint target_disp, int target_count,

 const MPI::Datatype& target_datatype) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GET(CHOICE ORIGIN_ADDR, INTEGER ORIGIN_COUNT, INTEGER ORIGIN_DATATYPE,

 INTEGER TARGET_RANK, INTEGER TARGET_DISP, INTEGER TARGET_COUNT,

 INTEGER TARGET_DATATYPE, INTEGER WIN, INTEGER IERROR)

Description

MPI_GET transfers origin_count successive entries of the type specified by

origin_datatype, starting at address origin_addr on the origin task from the target

task specified by win and target_rank.

The data are read from the target buffer at address (target_addr = window_base +

target_disp * disp_unit), where window_base and disp_unit are the base address

and window displacement unit specified at window initialization, by the target task.

The target buffer is specified by the arguments target_count and target_datatype.

The data transfer is the same as that which would occur if the origin task issued a

receive operation with arguments origin_addr, origin_count, origin_datatype,

target_rank, tag, comm, and the target task issued a send operation with arguments

target_addr, target_count, target_datatype, source, tag, comm, where target_addr is

the target buffer address computed as shown in the previous paragraph, and comm

is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar

message-passing communication. The target_datatype may not specify overlapping

entries in the target buffer. The message sent must fit, without truncation, in the

target buffer. Furthermore, the target buffer must fit in the target window.

The target_datatype argument is a handle to a data type object that is defined at

the origin task, even though it defines a data layout in the target task memory. This

does not cause any problems in a homogeneous environment. In a heterogeneous

environment, only portable data types are valid.

MPI_GET

294 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

The data type object is interpreted at the target task. The outcome is as if the target

data type object were defined at the target task, by the same sequence of calls

used to define it at the origin task. The target data type must contain relative

displacements, not absolute addresses.

Parameters

origin_addr

The initial address of the origin buffer (choice) (IN)

origin_count

The number of entries in origin buffer (nonnegative integer) (IN)

origin_datatype

The data type of each entry in the origin buffer (handle) (IN)

target_rank

The rank of the target (nonnegative integer) (IN)

target_disp

The displacement from the start of the window to the target buffer (nonnegative

integer) (IN)

target_count

The number of entries in the target buffer (nonnegative integer) (IN)

target_datatype

The data type of each entry in the target buffer (handle) (IN)

win

The window object used for communication (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_GET does not require that data move from target to origin until some

synchronization occurs. PE MPI may try to combine multiple gets from a target

within an epoch into a single data transfer. The user must not modify the source

buffer or make any assumption about the contents of the destination buffer until

after a synchronization operation has closed the epoch.

On some systems, there may be reasons to use special memory for one-sided

communication buffers. MPI_ALLOC_MEM may be the preferred way to allocate

buffers on these systems. With PE MPI, there is no advantage to using

MPI_ALLOC_MEM, but you can use it to improve the portability of your MPI code.

Errors

Invalid origin count (count)

Invalid origin datatype (handle)

Invalid target rank (rank)

Invalid target displacement (value)

Invalid target count (count)

Invalid target datatype (handle)

Invalid window handle (handle)

MPI_GET

Chapter 3. MPI subroutines and functions 295

Target outside access group

Origin buffer too small (size)

Target buffer ends outside target window

Target buffer starts outside target window

RMA communication call outside access epoch

RMA communication call in progress

RMA synchronization call in progress

Related information

 MPI_ACCUMULATE

 MPI_PUT

MPI_GET

296 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GET_ADDRESS, MPI_Get_address

Purpose

Returns the address of a location in memory.

C synopsis

#include <mpi.h>

int MPI_Get_address(void *location, MPI_Aint *address);

C++ synopsis

#include mpi.h

MPI::Aint MPI::Get_address(void* location);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GET_ADDRESS(CHOICE LOCATION(*),

 INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS,

 INTEGER IERROR)

Description

This subroutine returns the byte address of location.

Parameters

location

The location in caller memory (choice) (IN)

address

The address of the location (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_GET_ADDRESS is equivalent to address= (MPI_Aint) location in C, but this

subroutine is portable to processors with less straightforward addressing.

MPI_GET_ADDRESS is synonymous with MPI_ADDRESS. MPI_ADDRESS is not

available in C++. In FORTRAN, MPI_GET_ADDRESS returns an argument of type

INTEGER(KIND=MPI_ADDRESS_KIND) to support 32-bit and 64-bit addresses.

Such variables may be declared as INTEGER*4 in purely 32-bit codes and as

INTEGER*8 in 64-bit codes; KIND=MPI_ADDRESS_KIND works correctly in either

mode. MPI_ADDRESS is provided for backward compatibility. However, users are

encouraged to switch to MPI_GET_ADDRESS, in both FORTRAN and C.

Current FORTRAN MPI codes will run unmodified, and will port to any system.

However, these codes may fail if addresses larger than (2 (to the power of 32) -1)

are used in the program. New codes should be written so that they use

MPI_GET_ADDRESS. This provides compatibility with C and C++ and avoids errors

on 64-bit architectures. However, such newly-written codes may need to be

rewritten slightly to port to old FORTRAN 77 environments that do not support KIND

declarations.

MPI_GET_ADDRESS

Chapter 3. MPI subroutines and functions 297

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_CREATE_HINDEXED

 MPI_TYPE_CREATE_HVECTOR

 MPI_TYPE_CREATE_STRUCT

MPI_GET_ADDRESS

298 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GET_COUNT, MPI_Get_count

Purpose

Returns the number of elements in a message.

C synopsis

#include <mpi.h>

int MPI_Get_count(MPI_Status *status,MPI_Datatype datatype,

 int *count);

C++ synopsis

#include mpi.h

int MPI::Status::Get_count(const MPI::Datatype& datatype) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GET_COUNT(INTEGER STATUS(MPI_STATUS_SIZE),INTEGER DATATYPE,

 INTEGER COUNT,INTEGER IERROR)

Description

This subroutine returns the number of elements in a message. The datatype

argument and the argument provided by the call that set the status variable should

match.

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

Parameters

status

A status object (Status) (IN). Note that in FORTRAN a single status object is an

array of integers.

datatype

The data type of each message element (handle) (IN)

count

The number of elements (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid datatype

Type not committed

MPI not initialized

MPI already finalized

Related information

 MPI_IRECV

 MPI_PROBE

MPI_GET_COUNT

Chapter 3. MPI subroutines and functions 299

MPI_RECV

 MPI_WAIT

MPI_GET_COUNT

300 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GET_ELEMENTS, MPI_Get_elements

Purpose

Returns the number of basic elements in a message.

C synopsis

#include <mpi.h>

int MPI_Get_elements(MPI_Status *status,MPI_Datatype datatype,

 int *count);

C++ synopsis

#include mpi.h

int MPI::Status::Get_elements(const MPI::Datatype& datatype) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GET_ELEMENTS(INTEGER STATUS(MPI_STATUS_SIZE),INTEGER DATATYPE,

 INTEGER COUNT,INTEGER IERROR)

Description

This subroutine returns the number of type map elements in a message. When the

number of bytes does not align with the type signature, MPI_GET_ELEMENTS

returns MPI_UNDEFINED. For example, given type signature (int, short, int, short) a

10-byte message would return 3 while an 8-byte message would return

MPI_UNDEFINED.

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

Parameters

status

A status of object (status) (IN). Note that in FORTRAN a single status object is

an array of integers.

datatype

The data type used by the operation (handle) (IN)

count

An integer specifying the number of basic elements (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid datatype

Type is not committed

MPI not initialized

MPI already finalized

MPI_GET_ELEMENTS

Chapter 3. MPI subroutines and functions 301

Related information

 MPI_GET_COUNT

MPI_GET_ELEMENTS

302 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GET_PROCESSOR_NAME, MPI_Get_processor_name

Purpose

Returns the name of the local processor.

C synopsis

#include <mpi.h>

int MPI_Get_processor_name(char *name,int *resultlen);

C++ synopsis

#include mpi.h

void MPI::Get_processor_name(char*& name, int& resultlen);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GET_PROCESSOR_NAME(CHARACTER NAME(*),INTEGER RESULTLEN,

 INTEGER IERROR)

Description

This subroutine returns the name of the local processor at the time of the call. The

name is a character string from which it is possible to identify a specific piece of

hardware. name represents storage that is at least

MPI_MAX_PROCESSOR_NAME characters long and

MPI_GET_PROCESSOR_NAME can write up to this many characters in name.

The actual number of characters written is returned in resultlen. For C, the returned

name is a null-terminated string with the terminating byte not counted in resultlen.

For FORTRAN, the returned name is a blank-padded string.

Parameters

name

A unique specifier for the actual node (OUT)

resultlen

Specifies the printable character length of the result returned in name (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

MPI_GET_PROCESSOR_NAME

Chapter 3. MPI subroutines and functions 303

MPI_GET_VERSION, MPI_Get_version

Purpose

Returns the version of the MPI standard supported in this release.

C synopsis

#include <mpi.h>

int MPI_Get_version(int *version,int *subversion);

C++ synopsis

#include mpi.h

void MPI::Get_version(int& version, int& subversion);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GET_VERSION(INTEGER VERSION, INTEGER SUBVERSION, INTEGER IERROR)

Description

This subroutine is used to determine the version of the MPI standard supported by

the MPI implementation.

The symbolic constants MPI_VERSION and MPI_SUBVERSION, which are

included in mpi.h and mpif.h, provide similar compile-time information.

MPI_GET_VERSION can be called before MPI_INIT.

Parameters

version

MPI standard version number (integer) (OUT)

subversion

MPI standard subversion number (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_GET_VERSION

304 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GRAPH_CREATE, MPI_Graph_create

Purpose

Creates a new communicator containing graph topology information.

C synopsis

#include <mpi.h>

MPI_Graph_create(MPI_Comm comm_old,int nnodes, int *index,

 int *edges,int reorder,MPI_Comm *comm_graph);

C++ synopsis

#include mpi.h

MPI::Graphcomm MPI::Intracomm::Create_graph(int nnodes, const int index[],

 const int edges[], bool reorder) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GRAPH_CREATE(INTEGER COMM_OLD,INTEGER NNODES,INTEGER INDEX(*),

 INTEGER EDGES(*),INTEGER REORDER,INTEGER COMM_GRAPH,

 INTEGER IERROR)

Description

This subroutine creates a new communicator containing graph topology information

provided by nnodes, index, edges, and reorder. MPI_GRAPH_CREATE returns the

handle for this new communicator in comm_graph.

If there are more tasks in comm_old than there are in nnodes, some tasks are

returned with a value of MPI_COMM_NULL for comm_graph.

Parameters

comm_old

The input communicator (handle) (IN)

nnodes

An integer specifying the number of nodes in the graph (IN)

index

An array of integers describing node degrees (IN)

edges

An array of integers describing graph edges (IN)

reorder

Set to true means that ranking may be reordered (logical) (IN)

comm_graph

The communicator with the graph topology added (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The following example shows how to define the arguments nnodes, index, and

edges. Suppose there are four tasks (0, 1, 2, 3) with the following adjacency matrix:

MPI_GRAPH_CREATE

Chapter 3. MPI subroutines and functions 305

Table 2. Example in MPI_GRAPH_CREATE of

adjacency matrix

Task Neighbors

0 1, 3

1 0

2 3

3 0, 2

Then the input arguments are:

 Table 3. Input arguments for example in

MPI_GRAPH_CREATE

Argument Input

nnodes 4

index 2, 3, 4, 6

edges 1, 3, 0, 3, 0, 2

Thus, in C, index[0] is the degree of node 0, and index[i]–index[i–1] is the degree of

node i, i=1, ..., nnodes–1. The list of neighbors of node 0 is stored in edges[j], for 0

>= j >= index[0]–1 and the list of neighbors of node i, i > 0, is stored in edges[j],

index[i–1] >= j >= index[i]–1.

In FORTRAN, index(1) is the degree of node 0, and index(i+1)– index(i) is the

degree of node i, i=1, ..., nnodes–1. The list of neighbors of node 0 is stored in

edges(j), for 1 >= j >= index(1) and the list of neighbors of node i, i > 0, is stored in

edges(j), index(i)+1 >= j >= index(i+1).

Because node 0 indicates that node 1 is a neighbor, node 1 must indicate that node

0 is its neighbor. For any edge A→B, the edge B→A must also be specified.

Errors

MPI not initialized

MPI already finalized

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid nnodes

nnodes < 0 or nnodes > groupsize

Invalid node degree

(index[i]–index[i–1]) < 0

Invalid neighbor

edges[i] < 0 or edges[i]>=nnodes

Asymmetric graph

Conflicting collective operations on communicator

MPI_GRAPH_CREATE

306 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_CART_CREATE

MPI_GRAPH_CREATE

Chapter 3. MPI subroutines and functions 307

MPI_GRAPH_GET, MPI_Graph_get

Purpose

Retrieves graph topology information from a communicator.

C synopsis

#include <mpi.h>

MPI_Graph_get(MPI_Comm comm,int maxindex,int maxedges,

 int *index,int *edges);

C++ synopsis

#include mpi.h

void MPI::Graphcomm::Get_topo(int maxindex, int maxedges, int index[],

 int edges[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GRAPH_GET(INTEGER COMM,INTEGER MAXINDEX,INTEGER MAXEDGES,

 INTEGER INDEX(*),INTEGER EDGES(*),INTEGER IERROR)

Description

This subroutine retrieves the index and edges graph topology information

associated with a communicator.

Parameters

comm

A communicator with graph topology (handle) (IN)

maxindex

An integer specifying the length of index in the calling program (IN)

maxedges

An integer specifying the length of edges in the calling program (IN)

index

An array of integers containing node degrees (OUT)

edges

An array of integers containing node neighbors (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type

topology type must be graph

Invalid array size

maxindex < 0 or maxedges < 0

MPI_GRAPH_GET

308 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_GRAPH_CREATE

 MPI_GRAPHDIMS_GET

MPI_GRAPH_GET

Chapter 3. MPI subroutines and functions 309

MPI_GRAPH_MAP, MPI_Graph_map

Purpose

Computes placement of tasks on the physical processor.

C synopsis

#include <mpi.h>

MPI_Graph_map(MPI_Comm comm,int nnodes,int *index,int *edges,int *newrank);

C++ synopsis

#include mpi.h

int MPI::Graphcomm::Map(int nnodes, const int index[],

 const int edges[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GRAPH_MAP(INTEGER COMM,INTEGER NNODES,INTEGER INDEX(*),

 INTEGER EDGES(*),INTEGER NEWRANK,INTEGER IERROR)

Description

MPI_GRAPH_MAP allows MPI to compute an optimal placement for the calling task

on the physical processor layout by reordering the tasks in comm.

Parameters

comm

The input communicator (handle) (IN)

nnodes

The number of graph nodes (integer) (IN)

index

An integer array specifying node degrees (IN)

edges

An integer array specifying node adjacency (IN)

newrank

The reordered rank, or MPI_Undefined if the calling task does not belong to the

graph (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_GRAPH_MAP returns newrank as the original rank of the calling task if it

belongs to the graph or MPI_UNDEFINED if it does not.

Errors

Invalid communicator

Invalid communicator type

must be intra-communicator

Invalid nnodes

nnodes < 0 or nnodes > groupsize

MPI_GRAPH_MAP

310 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid node degree

index[i] < 0

Invalid neighbors

edges[i] < 0 or edges[i] >= nnodes

MPI not initialized

MPI already finalized

Related information

 MPI_CART_MAP

 MPI_GRAPH_CREATE

MPI_GRAPH_MAP

Chapter 3. MPI subroutines and functions 311

MPI_GRAPH_NEIGHBORS, MPI_Graph_neighbors

Purpose

Returns the neighbors of the given task.

C synopsis

#include <mpi.h>

MPI_Graph_neighbors(MPI_Comm comm,int rank,int maxneighbors,int *neighbors);

C++ synopsis

#include mpi.h

void MPI::Graphcomm::Get_neighbors(int rank, int maxneighbors,

 int neighbors[])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GRAPH_NEIGHBORS(MPI_COMM COMM,INTEGER RANK,INTEGER MAXNEIGHBORS,

 INTEGER NNEIGHBORS(*),INTEGER IERROR)

Description

This subroutine retrieves the adjacency information for a particular task.

Parameters

comm

A communicator with graph topology (handle) (IN)

rank

The rank of a task within group of comm (integer) (IN)

maxneighbors

The size of array neighbors (integer) (IN)

neighbors

The ranks of tasks that are neighbors of the specified task (array of integer)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid array size

maxneighbors < 0

Invalid rank

rank < 0 or rank > groupsize

MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type

no graph topology associate with communicator

MPI_GRAPH_NEIGHBORS

312 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_GRAPH_CREATE

 MPI_GRAPH_NEIGHBORS_COUNT

MPI_GRAPH_NEIGHBORS

Chapter 3. MPI subroutines and functions 313

MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_neighbors_count

Purpose

Returns the number of neighbors of the given task.

C synopsis

#include <mpi.h>

MPI_Graph_neighbors_count(MPI_Comm comm,int rank,

int *neighbors);

C++ synopsis

#include mpi.h

int MPI::Graphcomm::Get_neighbors_count(int rank) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GRAPH_NEIGHBORS_COUNT(INTEGER COMM,INTEGER RANK,

INTEGER NEIGHBORS(*),INTEGER IERROR)

Description

This subroutine returns the number of neighbors of the given task.

Parameters

comm

A communicator with graph topology (handle) (IN)

rank

The rank of a task within comm (integer) (IN)

neighbors

The number of neighbors of the specified task (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid rank

rank < 0 or rank > = groupsize

MPI not initialized

MPI already finalized

Invalid communicator

No graph topology associated with communicator

Invalid topology type

Related information

 MPI_GRAPH_CREATE

 MPI_GRAPH_NEIGHBORS

MPI_GRAPH_NEIGHBORS_COUNT

314 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GRAPHDIMS_GET, MPI_Graphdims_get

Purpose

Retrieves graph topology information from a communicator.

C synopsis

#include <mpi.h>

MPI_Graphdims_get(MPI_Comm comm,int *nnodes,int *nedges);

C++ synopsis

#include mpi.h

void MPI::Graphcomm::Get_dims(int nnodes[],

 int nedges[])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GRAPHDIMS_GET(INTEGER COMM,INTEGER NNDODES,INTEGER NEDGES,

 INTEGER IERROR)

Description

This subroutine retrieves the number of nodes and the number of edges in the

graph topology associated with a communicator.

Parameters

comm

A communicator with graph topology (handle) (IN)

nnodes

An integer specifying the number of nodes in the graph. The number of nodes

and the number of tasks in the group are equal. (OUT)

nedges

An integer specifying the number of edges in the graph. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

Invalid communicator

No topology

Invalid topology type

topology type must be graph

Related information

 MPI_GRAPH_CREATE

 MPI_GRAPH_GET

MPI_GRAPHDIMS_GET

Chapter 3. MPI subroutines and functions 315

MPI_GREQUEST_COMPLETE, MPI_Grequest_complete

Purpose

Marks the generalized request complete.

C synopsis

#include <mpi.h>

int MPI_Grequest_complete(MPI_Request request);

C++ synopsis

#include mpi.h

void MPI::Grequest::Complete();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GREQUEST_COMPLETE(INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine informs MPI that the operations represented by the generalized

request are complete. A call to MPI_WAIT(request, status) will return and a call to

MPI_TEST(request, flag, status) will return flag = true only after a call to

MPI_GREQUEST_COMPLETE has declared that these operations are complete.

Parameters

request

The generalized request (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

A GRequest free function returned an error

MPI_GRequest_free function fails

Invalid request handle

 Not a GRequest handle

 MPI already finalized

 MPI not initialized

 Related information

 MPI_GREQUEST_START

 MPI_TEST

 MPI_WAIT

MPI_GREQUEST_COMPLETE

316 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GREQUEST_START, MPI_Grequest_start

Purpose

Initializes a generalized request.

C synopsis

#include <mpi.h>

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,

 MPI_Grequest_free_function *free_fn,

 MPI_Grequest_cancel_function *cancel_fn,

 void *extra_state, MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Grequest MPI::Grequest::Start(MPI::Grequest::Query_function query_fn,

 MPI::Grequest::Free_function free_fn,

 MPI::Grequest::Cancel_function cancel_fn,

 void *extra_state);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GREQUEST_START(EXTERNAL QUERY_FN, EXTERNAL FREE_FN, EXTERNAL CANCEL_FN,

 INTEGER EXTRA_STATE, INTEGER REQUEST, INTEGER IERROR)

Description

This subroutine starts a generalized request and returns a handle to it in request.

This is a nonblocking operation.

Parameters

query_fn

The callback function that is invoked when the request status is queried

(function) (IN)

free_fn

The callback function that is invoked when the request is freed (function) (IN)

cancel_fn

The callback function that is invoked when the request is cancelled (function)

(IN)

extra_state

The extra state (integer) (IN)

request

The generalized request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

For a generalized request, the operation associated with the request is designed by

the application programmer and performed by the application; therefore, the

application must notify MPI when the operation has finished. It does this by making

a call to MPI_GREQUEST_COMPLETE. MPI maintains the ″completion″ status of

generalized requests. Any other request state has to be maintained by the user.

MPI_GREQUEST_START

Chapter 3. MPI subroutines and functions 317

In C++, a generalized request belongs to the class MPI::Grequest, which is a

derived class of MPI::Request. It is of the same type as regular requests, in C and

FORTRAN.

The syntax and meaning of the callback functions follow. All callback functions are

passed the extra_state argument that was associated with the request by the

starting call MPI_GREQUEST_START. This can be used to provide extra

information to the callback functions or to maintain the user-defined state for the

request.

In C, the query function is:

typedef int MPI_Grequest_query_function(void *extra_state, MPI_Status *status);

In FORTRAN, the query function is:

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

In C++, the query function is:

typedef int MPI::Grequest::Query_function(void* extra_state, MPI::Status& status);

The query_fn function computes the status that should be returned for the

generalized request. The status should include information about the successful or

unsuccessful cancellation of the request (the result to be returned by

MPI_TEST_CANCELLED).

The query_fn callback is invoked by the MPI_WAIT or MPI_TEST {ANY|SOME|ALL}

call that completed the generalized request associated with this callback. The

callback function is also invoked by calls to MPI_REQUEST_GET_STATUS, if the

request is complete when the call occurs. In both cases, the callback is passed a

reference to the corresponding status variable passed by the user to the MPI call;

the status set by the callback function is returned by the MPI call.

If the user provided MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE to the

MPI function that causes query_fn to be called, MPI passes a valid temporary

status object to query_fn, and this status is discarded upon return of the callback

function. This protects the query_fn from any need to deal with

MPI_STATUS_IGNORE. query_fn is invoked only after

MPI_GREQUEST_COMPLETE is called on the request; it may be invoked several

times for the same generalized request, that is, if the user calls

MPI_REQUEST_GET_STATUS several times for this request. A call to MPI_WAIT

or MPI_TEST {SOME|ALL} may cause multiple invocations of query_fn callback

functions, one for each generalized request that is completed by the MPI call. The

order of these invocations is not specified by MPI.

In C, the free function is:

typedef int MPI_Grequest_free_function(void *extra_state);

In FORTRAN, the free function is:

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

In C++, the free function is:

typedef int MPI::Grequest::Free_function(void* extra_state);

MPI_GREQUEST_START

318 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

The free_fn function is used to clean up user-allocated resources when the

generalized request is freed or completed. Freeing extra_state is an example.

The free_fn callback is invoked by the MPI_WAIT or MPI_TEST {ANY|SOME|ALL}

call that completed the generalized request associated with this callback. free_fn is

invoked after the call to query_fn for the same request. However, if the MPI call

completed multiple generalized requests, the order in which free_fn callback

functions are invoked is not specified by MPI.

The free_fn is also invoked for generalized requests that are freed by a call to

MPI_REQUEST_FREE (no call to MPI_WAIT or MPI_TEST {ANY|SOME|ALL}

occurs for such a request). In this case, the callback function is called either in the

MPI call MPI_REQUEST_FREE(request), or in the MPI call

MPI_GREQUEST_COMPLETE(request), whichever happens last. That is, in this

case the actual freeing code is run as soon as both MPI_REQUEST_FREE and

MPI_GREQUEST_COMPLETE have occurred. The request is not deallocated until

after free_fn completes. free_fn is invoked only once per request by a correct

program.

Calling MPI_REQUEST_FREE(request) causes the request handle to be set to

MPI_REQUEST_NULL. This handle to the generalized request is no longer valid.

However, user copies of this handle are valid until after free_fn completes because

MPI does not deallocate the object until then. Because free_fn is not called until

after MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to

make this call. Normally, the routine that is to carry out the user’s operation is

passed its own copy of the request handle at the time it is started. It will us this

copy of the request handle in a call to MPI_GREQUEST_COMPLETE once it has

finished. MPI deallocates the object after free_fn completes. At this point, user

copies of the request handle no longer point to a valid request. MPI does not set

user copies to MPI_REQUEST_NULL in this case, so it is up to the user to avoid

accessing this stale handle.

In C, the cancel function is:

typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

In FORTRAN, the cancel function is:

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

LOGICAL COMPLETE

In C++, the cancel function is:

typedef int MPI::Grequest::Cancel_function(void* extra_state, bool complete);

The cancel_fn function is invoked to attempt the cancellation of a generalized

request. It is called by MPI_CANCEL(request). MPI passes complete = true to the

callback function if MPI_GREQUEST_COMPLETE was already called on the

request, and complete = false otherwise. The user’s cancel_fn must not try to

cancel the operation if it is already complete.

All callback functions must return an error code. The code is passed back and dealt

with as appropriate for that error code by the MPI function that invoked the callback

function. For example, the callback function return code may be returned as the

return code of the function triggering the callback. In the case of an MPI_WAIT or

MPI_TEST call that invokes both query_fn and free_fn and both returning errors,

the MPI completion function will return the error code returned by the last callback,

MPI_GREQUEST_START

Chapter 3. MPI subroutines and functions 319

namely free_fn. If one or more of the requests in a call to MPI_WAIT or MPI_TEST

{SOME|ALL} failed, the MPI call returns MPI_ERR_IN_STATUS. In such a case, if

the MPI call was passed an array of statuses, MPI returns in each of the statuses

that correspond to a completed generalized request the error code returned by the

corresponding invocation of its query_fn or free_fn callback function. However, if the

MPI function was passed MPI_STATUSES_IGNORE, then the individual error codes

returned by each callback functions will be lost.

query_fn must not set the error field of status because it (query_fn may be called by

MPI_WAIT or MPI_TEST, in which case the error field of status should not change.

The MPI library knows the ″context″ in which query_fn is invoked and can decide

correctly when to put in the error field of status the returned error code.

When the MPI_ERRORS_ARE_FATAL error handler is in effect, the MPI library

issues the same message for all query_fn or free_fn return codes. The return code

value is embedded in the message.

Errors

Fatal errors:

MPI already finalized

 MPI not initialized

 Related information

 MPI_CANCEL

 MPI_GREQUEST_COMPLETE

 MPI_REQUEST_FREE

 MPI_REQUEST_GET_STATUS

 MPI_TEST

 MPI_TEST_CANCELLED

 MPI_WAIT

MPI_GREQUEST_START

320 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Group_c2f

Purpose

Translates a C group handle into a FORTRAN handle to the same group.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Group_c2f(MPI_Group group);

Description

This function does not have C++ or FORTRAN bindings. MPI_Group_c2f translates

a C group handle into a FORTRAN handle to the same group; it maps a null handle

into a null handle and a non-valid handle into a non-valid handle. The converted

handle is returned as the function’s value. There is no error detection or return

code.

Parameters

group

The group (handle) (IN)

Errors

None.

Related information

 MPI_Group_f2c

MPI_Group_c2f

Chapter 3. MPI subroutines and functions 321

MPI_GROUP_COMPARE, MPI_Group_compare

Purpose

Compares the contents of two task groups.

C synopsis

#include <mpi.h>

int MPI_Group_compare(MPI_Group group1,MPI_Group group2,

 int *result);

C++ synopsis

#include mpi.h

static int MPI::Group::Compare(const MPI::Group& group1, const MPI::Group& group2);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_COMPARE(INTEGER GROUP1,INTEGER GROUP2,INTEGER RESULT,

 INTEGER IERROR)

Description

This subroutine compares the contents of two task groups and returns one of the

following:

MPI_IDENT

both groups have the exact group members and group order

MPI_SIMILAR

group members are the same but group order is different

MPI_UNEQUAL

group size is different or group members are different, or both

Parameters

group1

The first group (handle) (IN)

group2

The second group (handle) (IN)

result

The result (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid groups

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_COMPARE

MPI_GROUP_COMPARE

322 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GROUP_DIFFERENCE, MPI_Group_difference

Purpose

Creates a new group that is the difference of two existing groups.

C synopsis

#include <mpi.h>

int MPI_Group_difference(MPI_Group group1,MPI_Group group2,

 MPI_Group *newgroup);

C++ synopsis

#include mpi.h

static MPI::Group MPI::Group::Difference(const MPI::Group& group1,

 const MPI::Group& group2);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_DIFFERENCE(INTEGER GROUP1,INTEGER GROUP2,

 INTEGER NEWGROUP,INTEGER IERROR)

Description

This subroutine creates a new group that is the difference of two existing groups.

The new group consists of all elements of the first group (group1) that are not in the

second group (group2), and is ordered as in the first group.

Parameters

group1

The first group (handle) (IN)

group2

The second group (handle) (IN)

newgroup

The difference group (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid groups

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_INTERSECTION

 MPI_GROUP_UNION

MPI_GROUP_DIFFERENCE

Chapter 3. MPI subroutines and functions 323

MPI_GROUP_EXCL, MPI_Group_excl

Purpose

Creates a new group by excluding selected tasks of an existing group.

C synopsis

#include <mpi.h>

int MPI_Group_excl(MPI_Group group,int n,int *ranks,

 MPI_Group *newgroup);

C++ synopsis

#include mpi.h

MPI::Group MPI::Group::Excl(int n, const int ranks[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_EXCL(INTEGER GROUP,INTEGER N,INTEGER RANKS(*),

 INTEGER NEWGROUP,INTEGER IERROR)

Description

This subroutine removes selected tasks from an existing group to create a new

group.

MPI_GROUP_EXCL creates a group of tasks newgroup obtained by deleting from

group tasks with ranks ranks[0],... ranks[n-1]. The ordering of tasks in newgroup is

identical to the ordering in group. Each of the n elements of ranks must be a valid

rank in group and all elements must be distinct. If n = 0, newgroup is identical to

group.

Parameters

group

The group (handle) (IN)

n The number of elements in array ranks (integer) (IN)

ranks

The array of integer ranks in group that is not to appear in newgroup (IN)

newgroup

The new group derived from the above, preserving the order defined by group

(handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid group

Invalid size

n < 0 or n > groupsize

Invalid ranks

ranks[i] < 0 or ranks[i] > = groupsize

Duplicate ranks

MPI_GROUP_EXCL

324 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_INCL

 MPI_GROUP_RANGE_EXCL

 MPI_GROUP_RANGE_INCL

MPI_GROUP_EXCL

Chapter 3. MPI subroutines and functions 325

MPI_Group_f2c

Purpose

Returns a C handle to a group.

C synopsis

#include <mpi.h>

MPI_Group MPI_Group_f2c(MPI_Fint group);

Description

This function does not have C++ or FORTRAN bindings. MPI_Group_f2c returns a

C handle to a group. If group is a valid FORTRAN handle to a group,

MPI_Group_f2c returns a valid C handle to that same group. If group is set to the

FORTRAN value MPI_GROUP_NULL, MPI_Group_f2c returns the equivalent null C

handle. If group is not a valid FORTRAN handle, MPI_Group_f2c returns a

non-valid C handle. The converted handle is returned as the function’s value. There

is no error detection or return code.

Parameters

group

The group (handle) (IN)

Errors

None.

Related information

 MPI_Group_c2f

MPI_Group_f2c

326 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GROUP_FREE, MPI_Group_free

Purpose

Marks a group for deallocation.

C synopsis

#include <mpi.h>

int MPI_Group_free(MPI_Group *group);

C++ synopsis

#include mpi.h

void MPI::Group::Free();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_FREE(INTEGER GROUP,INTEGER IERROR)

Description

MPI_GROUP_FREE sets the handle group to MPI_GROUP_NULL and marks the

group object for deallocation. Actual deallocation occurs only after all operations

involving group are completed. Any active operation using group completes

normally but no new calls with meaningful references to the freed group are

possible.

Parameters

group

The group (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid group

MPI not initialized

MPI already finalized

MPI_GROUP_FREE

Chapter 3. MPI subroutines and functions 327

MPI_GROUP_INCL, MPI_Group_incl

Purpose

Creates a new group consisting of selected tasks from an existing group.

C synopsis

#include <mpi.h>

int MPI_Group_incl(MPI_Group group,int n,int *ranks,

 MPI_Group *newgroup);

C++ synopsis

#include mpi.h

MPI::Group MPI::Group::Incl(int n, const int ranks[]) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_INCL(INTEGER GROUP,INTEGER N,INTEGER RANKS(*),

 INTEGER NEWGROUP,INTEGER IERROR)

Description

This subroutine creates a new group consisting of selected tasks from an existing

group.

MPI_GROUP_INCL creates a group newgroup consisting of n tasks in group with

ranks rank[0], ..., rank[n-1]. The task with rank i in newgroup is the task with rank

ranks[i] in group.

Each of the n elements of ranks must be a valid rank in group and all elements

must be distinct. If n = 0, newgroup is MPI_GROUP_EMPTY. This function can be

used to reorder the elements of a group.

Parameters

group

The group (handle) (IN)

n The number of elements in array ranks and the size of newgroup (integer) (IN)

ranks

The ranks of tasks in group to appear in newgroup (array of integers) (IN)

newgroup

The new group derived from above in the order defined by ranks (handle)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid group

Invalid size

n < 0 or n > groupsize

Invalid ranks

ranks[i] < 0 or ranks[i] >= groupsize

MPI_GROUP_INCL

328 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Duplicate ranks

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_EXCL

 MPI_GROUP_RANGE_EXCL

 MPI_GROUP_RANGE_INCL

MPI_GROUP_INCL

Chapter 3. MPI subroutines and functions 329

MPI_GROUP_INTERSECTION, MPI_Group_intersection

Purpose

Creates a new group that is the intersection of two existing groups.

C synopsis

#include <mpi.h>

int MPI_Group_intersection(MPI_Group group1,MPI_Group group2,

 MPI_Group *newgroup);

C++ synopsis

#include mpi.h

static MPI::Group MPI::Group::Intersect(const MPI::Group& group1,

 const MPI::Group& group2);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_INTERSECTION(INTEGER GROUP1,INTEGER GROUP2,

 INTEGER NEWGROUP,INTEGER IERROR)

Description

This subroutine creates a new group that is the intersection of two existing groups.

The new group consists of all elements of the first group (group1) that are also part

of the second group (group2), and is ordered as in the first group.

Parameters

group1

The first group (handle) (IN)

group2

The second group (handle) (IN)

newgroup

The intersection group (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid groups

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_DIFFERENCE

 MPI_GROUP_UNION

MPI_GROUP_INTERSECTION

330 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl

Purpose

Creates a new group by removing selected ranges of tasks from an existing group.

C synopsis

#include <mpi.h>

int MPI_Group_range_excl(MPI_Group group,int n,

 int ranges[][3],MPI_Group *newgroup);

C++ synopsis

#include mpi.h

MPI::Group MPI::Group::Range_excl(int n, const int ranges[][3])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_RANGE_EXCL(INTEGER GROUP,INTEGER N,INTEGER RANGES(3,*),

 INTEGER NEWGROUP,INTEGER IERROR)

Description

This subroutine creates a new group by removing selected ranges of tasks from an

existing group. Each computed rank must be a valid rank in group and all computed

ranks must be distinct.

The function of this subroutine is equivalent to expanding the array ranges to an

array of the excluded ranks and passing the resulting array of ranks and other

arguments to MPI_GROUP_EXCL. A call to MPI_GROUP_EXCL is equivalent to a

call to MPI_GROUP_RANGE_EXCL with each rank i in ranks replaced by the triplet

(i,i,1) in the argument ranges.

Parameters

group

The group (handle) (IN)

n The number of triplets in array ranges (integer) (IN)

ranges

An array of integer triplets of the form (first rank, last rank, stride) specifying the

ranks in group of tasks that are to be excluded from the output group

newgroup. (IN)

newgroup

The new group derived from above that preserves the order in group (handle)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid group

Invalid size

n < 0 or n > groupsize

MPI_GROUP_RANGE_EXCL

Chapter 3. MPI subroutines and functions 331

Invalid rank

a computed rank < 0 or >= groupsize

Duplicate ranks

Invalid strides

stride[i] = 0

Too many ranks

Number of ranks > groupsize

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_EXCL

 MPI_GROUP_INCL

 MPI_GROUP_RANGE_INCL

MPI_GROUP_RANGE_EXCL

332 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GROUP_RANGE_INCL, MPI_Group_range_incl

Purpose

Creates a new group consisting of selected ranges of tasks from an existing group.

C synopsis

#include <mpi.h>

int MPI_Group_range_incl(MPI_Group group,int n,

 int ranges[][3],MPI_Group *newgroup);

C++ synopsis

#include mpi.h

MPI::Group MPI::Group::Range_incl(int n, const int ranges[][3])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_RANGE_INCL(INTEGER GROUP,INTEGER N,INTEGER RANGES(3,*),

 INTEGER NEWGROUP,INTEGER IERROR)

Description

This subroutine creates a new group consisting of selected ranges of tasks from an

existing group. The function of this subroutine is equivalent to expanding the array

of ranges to an array of the included ranks and passing the resulting array of ranks

and other arguments to MPI_GROUP_INCL. A call to MPI_GROUP_INCL is

equivalent to a call to MPI_GROUP_RANGE_INCL with each rank i in ranks

replaced by the triplet (i,i,1) in the argument ranges.

Parameters

group

The group (handle) (IN)

n The number of triplets in array ranges (integer) (IN)

ranges

A one-dimensional array of integer triplets of the form (first_rank, last_rank,

stride) indicating ranks in group of tasks to be included in newgroup (IN)

newgroup

The new group derived from above in the order defined by ranges (handle)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid group

Invalid size

n < 0 or n > groupsize

Invalid ranks

a computed rank < 0 or >= groupsize

Duplicate ranks

MPI_GROUP_RANGE_INCL

Chapter 3. MPI subroutines and functions 333

Invalid strides

stride[i] = 0

Too many ranks

nranks > groupsize

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_EXCL

 MPI_GROUP_INCL

 MPI_GROUP_RANGE_EXCL

MPI_GROUP_RANGE_INCL

334 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GROUP_RANK, MPI_Group_rank

Purpose

Returns the rank of the local task with respect to group.

C synopsis

#include <mpi.h>

int MPI_Group_rank(MPI_Group group,int *rank);

C++ synopsis

#include mpi.h

int MPI::Group::Get_rank() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_RANK(INTEGER GROUP,INTEGER RANK,INTEGER IERROR)

Description

This subroutine returns the rank of the local task with respect to group. This local

operation does not require any intertask communication.

Parameters

group

The group (handle) (IN)

rank

An integer that specifies the rank of the calling task in group or

MPI_UNDEFINED if the task is not a member. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid group

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_RANK

MPI_GROUP_RANK

Chapter 3. MPI subroutines and functions 335

MPI_GROUP_SIZE, MPI_Group_size

Purpose

Returns the number of tasks in a group.

C synopsis

#include <mpi.h>

int MPI_Group_size(MPI_Group group,int *size);

C++ synopsis

#include mpi.h

int MPI::Group::Get_size() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_SIZE(INTEGER GROUP,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine returns the number of tasks in a group. This is a local operation

and does not require any intertask communication.

Parameters

group

The group (handle) (IN)

size

The number of tasks in the group (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid group

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_SIZE

MPI_GROUP_SIZE

336 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GROUP_TRANSLATE_RANKS, MPI_Group_translate_ranks

Purpose

Converts task ranks of one group into ranks of another group.

C synopsis

#include <mpi.h>

int MPI_Group_translate_ranks(MPI_Group group1,int n,

 int *ranks1,MPI_Group group2,int *ranks2);

C++ synopsis

#include mpi.h

void MPI::Group::Translate_ranks(const MPI::Group& group1, int n,

 const int ranks1[],

 const MPI::Group& group2, int ranks2[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_TRANSLATE_RANKS(INTEGER GROUP1, INTEGER N,

 INTEGER RANKS1(*),INTEGER GROUP2,INTEGER RANKS2(*),INTEGER IERROR)

Description

This subroutine converts task ranks of one group into ranks of another group. For

example, if you know the ranks of tasks in one group, you can use this function to

find the ranks of tasks in another group.

Parameters

group1

The first group (handle) (IN)

n An integer that specifies the number of ranks in ranks1 and ranks2 arrays (IN)

ranks1

An array of zero or more valid ranks in group1 (IN)

group2

The second group (handle) (IN)

ranks2

An array of corresponding ranks in group2. If the task of ranks1(i) is not a

member of group2, ranks2(i) returns MPI_UNDEFINED. (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid groups

Invalid rank count

n < 0

Invalid rank

ranks1[i] < 0 or ranks1[i] > = size of group1

MPI not initialized

MPI already finalized

MPI_GROUP_TRANSLATE_RANKS

Chapter 3. MPI subroutines and functions 337

Related information

MPI_COMM_COMPARE

MPI_GROUP_TRANSLATE_RANKS

338 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_GROUP_UNION, MPI_Group_union

Purpose

Creates a new group that is the union of two existing groups.

C synopsis

#include <mpi.h>

int MPI_Group_union(MPI_Group group1,MPI_Group group2,

 MPI_Group *newgroup);

C++ synopsis

#include mpi.h

static MPI::Group MPI::Group::Union(const MPI::Group& group1,

 const MPI::Group& group2);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_GROUP_UNION(INTEGER GROUP1,INTEGER GROUP2,INTEGER NEWGROUP,

 INTEGER IERROR)

Description

This subroutine creates a new group that is the union of two existing groups. The

new group consists of the elements of the first group (group1) followed by all the

elements of the second group (group2) not in the first group.

Parameters

group1

The first group (handle) (IN)

group2

The second group (handle) (IN)

newgroup

The union group (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid groups

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_DIFFERENCE

 MPI_GROUP_INTERSECTION

MPI_GROUP_UNION

Chapter 3. MPI subroutines and functions 339

MPI_IBSEND, MPI_Ibsend

Purpose

Performs a nonblocking buffered mode send operation.

C synopsis

#include <mpi.h>

int MPI_Ibsend(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::Comm::Ibsend(const void* buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_IBSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

MPI_IBSEND starts a buffered mode, nonblocking send. The send buffer may not

be modified until the request has been completed by MPI_WAIT, MPI_TEST, or one

of the other MPI wait or test functions.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of the destination task in comm (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Make sure you have enough buffer space available. An error occurs if the message

must be buffered and there is there is not enough buffer space. The amount of

buffer space needed to be safe depends on the expected peak of pending

MPI_IBSEND

340 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

messages. The sum of the sizes of all of the pending messages at that point plus

(MPI_IBSEND_OVERHEAD*number_of_messages) should be sufficient.

Avoid using MPI_IBSEND if possible. It adds overhead because it requires an extra

memory-to-memory copy of the outgoing data. If MPI_IBSEND is used, the

associated receive operations may perform better with MPI_CSS_INTERRUPT

enabled.

Errors

Invalid count

count < 0

Invalid datatype

Invalid destination

Type not committed

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update

Related information

 MPI_BSEND

 MPI_BSEND_INIT

 MPI_BUFFER_ATTACH

 MPI_WAIT

MPI_IBSEND

Chapter 3. MPI subroutines and functions 341

MPI_Info_c2f

Purpose

Translates a C Info object handle into a FORTRAN handle to the same Info object.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Info_c2f(MPI_Info info);

Description

This function does not have C++ or FORTRAN bindings. MPI_Info_c2f translates a

C Info object handle into a FORTRAN handle to the same Info object; it maps a null

handle into a null handle and a non-valid handle into a non-valid handle. The

converted handle is returned as the function’s value. There is no error detection or

return code.

Parameters

info

The Info object (handle) (IN)

Errors

None.

Related information

 MPI_Info_f2c

MPI_Info_c2f

342 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_INFO_CREATE, MPI_Info_create

Purpose

Creates a new Info object.

C synopsis

#include <mpi.h>

int MPI_Info_create(MPI_Info *info);

C++ synopsis

#include mpi.h

static MPI::Info MPI::Info::Create();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_CREATE(INTEGER INFO,INTEGER IERROR)

Description

This subroutine creates a new Info object and returns a handle to it in the info

argument. The new Info object does not contain any (key,value) pairs, or hints. Any

hints are added to an Info object using MPI_INFO_SET. See “MPI_INFO_SET,

MPI_Info_set” on page 356 for information about the MP_HINTS_FILTERED

environment variable.

Parameters

info

The Info object created (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Related information

 MPI_INFO_DELETE

 MPI_INFO_DUP

 MPI_INFO_FREE

 MPI_INFO_GET

 MPI_INFO_GET_NKEYS

 MPI_INFO_GET_NTHKEY

 MPI_INFO_GET_VALUELEN

 MPI_INFO_SET

MPI_INFO_CREATE

Chapter 3. MPI subroutines and functions 343

MPI_INFO_DELETE, MPI_Info_delete

Purpose

Deletes a (key, value) pair from an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_delete(MPI_Info info,char *key);

C++ synopsis

#include mpi.h

void MPI::Info::Delete(const char* key);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_DELETE(INTEGER INFO,CHARACTER KEY(*),INTEGER IERROR)

Description

This subroutine deletes a (key,value) pair from the Info object referred to by info. If

the key is unrecognized, the attempt to delete it will be ignored and no error occurs.

In other words, an attempt to delete with a key that exists in the object will succeed.

An attempt to delete with a recognized key that is not present in the object will raise

an error. An attempt to delete with an unrecognized key has no effect. See

“MPI_INFO_SET, MPI_Info_set” on page 356 for information about how the

MP_HINTS_FILTERED environment variable can affect which keys are recognized.

Parameters

info

The Info object (handle) (OUT)

key

The key of the pair to be deleted (string) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid info

info is not a valid Info object

Invalid info key

key must contain less than 128 characters

Key not found in info

Related information

 MPI_INFO_CREATE

 MPI_INFO_DUP

 MPI_INFO_FREE

MPI_INFO_DELETE

344 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_INFO_GET

 MPI_INFO_GET_NKEYS

 MPI_INFO_GET_NTHKEY

 MPI_INFO_GET_VALUELEN

 MPI_INFO_SET

MPI_INFO_DELETE

Chapter 3. MPI subroutines and functions 345

MPI_INFO_DUP, MPI_Info_dup

Purpose

Duplicates an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_dup(MPI_Info info,MPI_Info *newinfo);

C++ synopsis

#include mpi.h

MPI::Info MPI::Info::Dup() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_DUP(INTEGER INFO,INTEGER NEWINFO,INTEGER IERROR)

Description

This subroutine duplicates the Info object referred to by info and returns in newinfo

a handle to the newly-created object. The new object has the same (key,value)

pairs and ordering of keys as the old object.

Parameters

info

The Info object to be duplicated(handle) (IN)

newinfo

The new Info object (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid info

info is not a valid Info object

Related information

 MPI_INFO_CREATE

 MPI_INFO_DELETE

 MPI_INFO_FREE

 MPI_INFO_GET

 MPI_INFO_GET_NKEYS

 MPI_INFO_GET_NTHKEY

 MPI_INFO_GET_VALUELEN

 MPI_INFO_SET

MPI_INFO_DUP

346 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Info_f2c

Purpose

Returns a C handle to an Info object.

C synopsis

#include <mpi.h>

MPI_Info MPI_Info_f2c(MPI_Fint file);

Description

This function does not have C++ or FORTRAN bindings. MPI_Info_f2c returns a C

handle to an Info object. If info is a valid FORTRAN handle to an Info object,

MPI_Info_f2c returns a valid C handle to that same file. If info is set to the

FORTRAN value MPI_INFO_NULL, MPI_Info_f2c returns the equivalent null C

handle. If info is not a valid FORTRAN handle, MPI_Info_f2c returns a non-valid C

handle. The converted handle is returned as the function’s value. There is no error

detection or return code.

Parameters

info

The Info object (handle) (IN)

Errors

None.

Related information

 MPI_Info_c2f

MPI_Info_f2c

Chapter 3. MPI subroutines and functions 347

MPI_INFO_FREE, MPI_Info_free

Purpose

Frees the Info object referred to by the info argument and sets it to

MPI_INFO_NULL.

C synopsis

#include <mpi.h>

int MPI_Info_free(MPI_Info *info);

C++ synopsis

#include mpi.h

void MPI::Info::Free();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_FREE(INTEGER INFO,INTEGER IERROR)

Description

MPI_INFO_FREE frees the Info object referred to by the info argument and sets

info to MPI_INFO_NULL.

Parameters

info

The Info object (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid info

info is not a valid Info object

Related information

 MPI_INFO_CREATE

 MPI_INFO_DELETE

 MPI_INFO_DUP

 MPI_INFO_GET

 MPI_INFO_GET_NKEYS

 MPI_INFO_GET_NTHKEY

 MPI_INFO_GET_VALUELEN

 MPI_INFO_SET

MPI_INFO_FREE

348 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_INFO_GET, MPI_Info_get

Purpose

Retrieves the value associated with key in an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_get(MPI_Info info,char *key,int valuelen,char *value,int *flag);

C++ synopsis

#include mpi.h

bool MPI::Info::Get(const char* key, int valuelen, char* value) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_GET(INTEGER INFO,CHARACTER KEY(*),INTEGER VALUELEN,CHARACTER VALUE(*),

 LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine retrieves the value associated with the key in the Info object

referred to by info. If the (key,value) pair is present in the Info object,

MPI_INFO_GET sets flag to true and returns the value in value. Otherwise, flag is

set to false and value remains unchanged.

Parameters

info

The Info object (handle) (IN)

key

The key (string) (IN)

valuelen

The length of the value argument (integer) (IN)

value

The value (string) (OUT)

flag

Set to true if key is defined and set to false if not (boolean) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In order to determine how much space should be allocated for the value argument,

call MPI_INFO_GET_VALUELEN first.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid Info

Info is not a valid Info object

MPI_INFO_GET

Chapter 3. MPI subroutines and functions 349

Invalid info key

key must contain less than 128 characters

Related information

 MPI_INFO_CREATE

 MPI_INFO_DELETE

 MPI_INFO_DUP

 MPI_INFO_FREE

 MPI_INFO_GET_NKEYS

 MPI_INFO_GET_NTHKEY

 MPI_INFO_GET_VALUELEN

 MPI_INFO_SET

MPI_INFO_GET

350 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_INFO_GET_NKEYS, MPI_Info_get_nkeys

Purpose

Returns the number of keys defined in an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_get_nkeys(MPI_Info info,int *nkeys);

C++ synopsis

#include mpi.h

int MPI::Info::Get_nkeys() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_GET_NKEYS(INTEGER INFO,INTEGER NKEYS,INTEGER IERROR)

Description

MPI_INFO_GET_NKEYS returns in nkeys the number of keys currently defined in

the Info object referred to by info.

Parameters

info

The Info object (handle) (IN)

nkeys

The number of defined keys (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid info

info is not a valid Info object

Related information

 MPI_INFO_CREATE

 MPI_INFO_DELETE

 MPI_INFO_DUP

 MPI_INFO_FREE

 MPI_INFO_GET

 MPI_INFO_GET_NTHKEY

 MPI_INFO_GET_VALUELEN

 MPI_INFO_SET

MPI_INFO_GET_NKEYS

Chapter 3. MPI subroutines and functions 351

MPI_INFO_GET_NTHKEY, MPI_Info_get_nthkey

Purpose

Retrieves the nth key defined in an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key);

C++ synopsis

#include mpi.h

void MPI::Info::Get_nthkey(int n, char* key) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_GET_NTHKEY(INTEGER INFO,INTEGER N,CHARACTER KEY(*),

 INTEGER IERROR)

Description

MPI_INFO_GET_NTHKEY retrieves the nth key defined in the Info object referred

to by info. The first key defined has the rank of 0, so n must be greater than – 1

and less than the number of keys returned by MPI_INFO_GET_NKEYS.

Parameters

info

The Info object (handle) (IN)

n The key number (integer) (IN)

key

The key (string) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid info

info is not a valid Info object

Invalid info key index

n must have a value between 0 and N-1, where N is the number of keys

returned by MPI_INFO_GET_NKEYS

Related information

 MPI_INFO_CREATE

 MPI_INFO_DELETE

 MPI_INFO_DUP

 MPI_INFO_FREE

 MPI_INFO_GET

MPI_INFO_GET_NTHKEY

352 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_INFO_GET_NKEYS

 MPI_INFO_GET_VALUELEN

 MPI_INFO_SET

MPI_INFO_GET_NTHKEY

Chapter 3. MPI subroutines and functions 353

MPI_INFO_GET_VALUELEN, MPI_Info_get_valuelen

Purpose

Retrieves the length of the value associated with a key of an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_get_valuelen(MPI_Info info,char *key,int *valuelen,int *flag);

C++ synopsis

#include mpi.h

bool MPI::Info::Get_valuelen(const char* key, int& valuelen) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_GET_VALUELEN(INTEGER INFO,CHARACTER KEY(*),INTEGER VALUELEN,

 LOGICAL FLAG,INTEGER IERROR)

Description

This subroutine retrieves the length of the value associated with the key in the Info

object referred to by info. If key is defined, valuelen is set to the length of the

associated value after it has been converted to a string and flag is set to true.

Otherwise, flag is set to false and valuelen remains unchanged.

Parameters

info

The Info object (handle) (IN)

key

The key (string) (IN)

valuelen

The length of the value associated with key (integer) (OUT)

flag

Set to true if key is defined or false if key is not defined (boolean) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Use this subroutine before calling MPI_INFO_GET to determine how much space

must be allocated for the value parameter of MPI_INFO_GET.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid info

info is not a valid Info object

Invalid info key

key must contain less than 128 characters

MPI_INFO_GET_VALUELEN

354 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_INFO_CREATE

 MPI_INFO_DELETE

 MPI_INFO_DUP

 MPI_INFO_FREE

 MPI_INFO_GET

 MPI_INFO_GET_NKEYS

 MPI_INFO_GET_NTHKEY

 MPI_INFO_SET

MPI_INFO_GET_VALUELEN

Chapter 3. MPI subroutines and functions 355

MPI_INFO_SET, MPI_Info_set

Purpose

Adds a pair (key, value) to an Info object.

C synopsis

#include <mpi.h>

int MPI_Info_set(MPI_Info info,char *key,char *value);

C++ synopsis

#include mpi.h

void MPI::Info::Set(const char* key, const char* value);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INFO_SET(INTEGER INFO,CHARACTER KEY(*),CHARACTER VALUE(*),INTEGER IERROR)

Description

This subroutine adds the (key,value) pair to the Info object referred to by info, and

overrides the value if a value for the same key was previously set. The

MP_HINTS_FILTERED environment variable determines the behavior of Info object

subroutines. If the variable is set to yes, or allowed to default, the (key,value) pairs

are filtered, meaning only those keys that pertain to supported hints are recognized

by MPI_INFO subroutines, may be recorded in, and will be accepted. In filtered

mode, an attempt to set an unsupported hint will leave the Info object unchanged. A

subsequent MPI_INFO_GET with the key will indicate that the hint is not present. A

recognized hint may also be ignored if it has a value that is not valid. This allows

the user to detect whether any provided hint is actually supported by PE MPI.

If the variable is set to no, pairs are unfiltered, meaning the key and the value may

be any strings the user provides. Any keys that are not supported by PE MPI and

have not been previously used will be added to a list of keys recognized by

MPI_INFO subroutines. For the remainder of the job, the MPI_INFO subroutines will

treat that key as recognized. In unfiltered mode, all hints will be recorded in the Info

object. There is no way to determine which hints are understood. Unfiltered mode

may be used if there is a need for hints other than those supported by PE MPI.

This might occur if any additional MPI-like functions layered on PE MPI need to

store and retrieve hints.

Parameters

info

The Info object (handle) (INOUT)

key

The key (string) (IN)

value

The value (string) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_INFO_SET

356 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Notes

Only Info object (key,value) pairs associated with supported hints and containing

valid values will affect MPI subroutines that take an Info object as a parameter. The

MP_HINTS_FILTERED variable affects only the behavior of the MPI_INFO

subroutines. Unsupported (key,value) pairs in an Info object are ignored by the

subroutines that accept hints.

For a list of hints that apply to MPI_FILE subroutines, see “MPI_FILE_OPEN,

MPI_File_open” on page 207.

For a list of hints that apply to MPI_WIN subroutines, see “MPI_WIN_CREATE,

MPI_Win_create” on page 552.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid info

info is not a valid Info object

Invalid info key

key must contain less than 128 characters

Invalid info value

value must contain less than 1024 characters

Related information

 MPI_INFO_CREATE

 MPI_INFO_DELETE

 MPI_INFO_DUP

 MPI_INFO_FREE

 MPI_INFO_GET

 MPI_INFO_GET_NKEYS

 MPI_INFO_GET_NTHKEY

 MPI_INFO_GET_VALUELEN

MPI_INFO_SET

Chapter 3. MPI subroutines and functions 357

MPI_INIT, MPI_Init

Purpose

Initializes MPI.

C synopsis

#include <mpi.h>

int MPI_Init(int *argc,char ***argv);

C++ synopsis

#include mpi.h

void MPI::Init(int& argc, char**& argv);

#include mpi.h

void MPI::Init();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INIT(INTEGER IERROR)

Description

This subroutine initializes MPI. All MPI programs must call MPI_INIT before any

other MPI routine (with the exception of MPI_INITIALIZED). More than one call to

MPI_INIT by any task is erroneous.

Parameters

IERROR

The FORTRAN return code. It is always the last argument.

Notes

For either MPI_INIT or MPI_INIT_THREAD, PE MPI normally returns support that is

equivalent to MPI_THREAD_MULTIPLE. For more information, see

“MPI_INIT_THREAD, MPI_Init_thread” on page 360.

argc and argv are the arguments passed to main. PE MPI does not examine or

modify these arguments when they are passed to MPI_INIT. In accordance with

MPI-2, it is valid to pass NULL in place of argc and argv.

In a threads environment, MPI_INIT needs to be called once per task and not once

per thread. You do not need to call it on the main thread but both MPI_INIT and

MPI_FINALIZE must be called on the same thread.

MPI_INIT opens a local socket and binds it to a port, sends that information to

POE, receives a list of destination addresses and ports, opens a socket to send to

each one, verifies that communication can be established, and distributes MPI

internal state to each task.

In the threads library, the work of MPI_INIT is done when the function is called. The

local socket is not open when your main program starts. This may affect the

numbering of file descriptors, the use of the environment strings, and the treatment

of stdin (the MP_HOLD_STDIN variable). If an existing nonthreads program is

relinked using the threads library, the code prior to calling MPI_INIT should be

examined with these thoughts in mind.

MPI_INIT

358 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Also for the threads library, if you had registered a function as a signal handler for

the SIGIO signal at the time that MPI_INIT was called, that function will be added to

the interrupt service thread and be processed as a thread function rather than as a

signal handler. You will need to set the environment variable MP_CSS_INTERRUPT

to YES in order to get arriving packets to invoke the interrupt service thread.

Related information

 MPI_FINALIZE

 MPI_INITIALIZED

 MPI_INIT_THREAD

MPI_INIT

Chapter 3. MPI subroutines and functions 359

MPI_INIT_THREAD, MPI_Init_thread

Purpose

Initializes MPI and the MPI threads environment.

C synopsis

#include <mpi.h>

int MPI_Init_thread(int *argc, char *((*argv)[]), int required,

 int *provided);

C++ synopsis

#include mpi.h

int MPI::Init_thread(int& argc, char**& argv, int required);

#include mpi.h

int MPI::Init_thread(int required);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INIT_THREAD(INTEGER REQUIRED, INTEGER PROVIDED, INTEGER IERROR)

Description

This subroutine initializes MPI in the same way that a call to MPI_INIT would. In

some implementations, it may do special threads environment initialization. In PE

MPI, MPI_INIT_THREAD is equivalent to MPI_INIT. The argument required is used

to specify the desired level of thread support. The possible values for required are

listed in increasing order of thread support:

MPI_THREAD_SINGLE Only one thread will run.

MPI_THREAD_FUNNELED The task can be multi-threaded, but only the main

thread will make MPI calls. All MPI calls are

funneled to the main thread.

MPI_THREAD_SERIALIZED The task can be multi-threaded and multiple

threads may make MPI calls, but only one at a

time: MPI calls are not made concurrently from two

distinct threads. All MPI calls are ″serialized″ by

explicit application thread synchronizations.

MPI_THREAD_MULTIPLE Multiple threads can call MPI with no restrictions.

These values are monotonic: MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,

MPI_THREAD_SERIALIZED, MPI_THREAD_MULTIPLE.

MPI_INIT_THREAD returns information about the actual level of thread support that

MPI will provide in the provided argument. It can be one of the four values listed

above.

Parameters

required

The desired level of thread support (integer) (IN)

provided

The level of thread support that is provided (integer) (OUT)

MPI_INIT_THREAD

360 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

IERROR

The FORTRAN return code. It is always the last argument.

Notes

For PE MPI, the required argument is ignored. In normal use, PE MPI always

provides a level of thread support equivalent to MPI_THREAD_MULTIPLE. If the

MPI_SINGLE_THREAD environment variable is set to yes, MPI_INIT_THREAD

returns MPI_THREAD_FUNNELED.

In C and C++, the passing of argc and argv is optional. In C, this is accomplished

by passing the appropriate null pointer. In C++, this is accomplished with two

separate bindings to cover these two cases.

Errors

Fatal errors:

MPI already finalized

MPI not initialized

Unrecognized thread support level

required must be MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,

MPI_THREAD_SERIALIZED, or MPI_THREAD_MULTIPLE.

Related information

 MPI_INIT

MPI_INIT_THREAD

Chapter 3. MPI subroutines and functions 361

MPI_INITIALIZED, MPI_Initialized

Purpose

Determines whether MPI is initialized.

C synopsis

#include <mpi.h>

int MPI_Initialized(int *flag);

C++ synopsis

#include mpi.h

bool MPI::Is_initialized();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INITIALIZED(INTEGER FLAG,INTEGER IERROR)

Description

This subroutine determines if MPI is initialized. MPI_INITIALIZED and

MPI_GET_VERSION are the only MPI calls that can be made before MPI_INIT is

called.

Parameters

flag

Set to true if MPI_INIT was called; otherwise set to false.

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Because it is erroneous to call MPI_INIT more than once per task, use

MPI_INITIALIZED if there is doubt as to the state of MPI.

Related information

 MPI_INIT

MPI_INITIALIZED

362 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_INTERCOMM_CREATE, MPI_Intercomm_create

Purpose

Creates an inter-communicator from two intra-communicators.

C synopsis

#include <mpi.h>

int MPI_Intercomm_create(MPI_Comm local_comm,int local_leader,

 MPI_Comm peer_comm,int remote_leader,int tag,MPI_Comm *newintercom);

C++ synopsis

#include mpi.h

MPI::Intercomm MPI::Intracomm::Create_intercomm(int local_leader,

 const MPI::Comm& peer_comm,

 int remote_leader, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INTERCOMM_CREATE(INTEGER LOCAL_COMM,INTEGER LOCAL_LEADER,

 INTEGER PEER_COMM,INTEGER REMOTE_LEADER,INTEGER TAG,

 INTEGER NEWINTERCOM,INTEGER IERROR)

Description

This subroutine creates an inter-communicator from two intra-communicators and is

collective over the union of the local and the remote groups. Tasks should provide

identical local_comm and local_leader arguments within each group. Wildcards are

not permitted for remote_leader, local_leader, and tag.

MPI_INTERCOMM_CREATE uses point-to-point communication with communicator

peer_comm and tag tag between the leaders. Make sure that there are no pending

communications on peer_comm that could interfere with this communication. It is

recommended that you use a dedicated peer communicator, such as a duplicate of

MPI_COMM_WORLD, to avoid trouble with peer communicators.

Parameters

local_comm

The local intra-communicator (handle) (IN)

local_leader

An integer specifying the rank of local group leader in local_comm (IN)

peer_comm

The “peer” intra-communicator (significant only at the local_leader) (handle) (IN)

remote_leader

The rank of the remote group leader in peer_comm (significant only at the

local_leader) (integer) (IN)

tag

A safe tag (integer) (IN)

newintercom

The new inter-communicator (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_INTERCOMM_CREATE

Chapter 3. MPI subroutines and functions 363

Errors

Conflicting collective operations on communicator

Invalid communicators

Invalid communicator types

must be intra-communicators

Invalid ranks

rank < 0 or rank > = groupsize

Invalid tag

tag < 0

MPI not initialized

MPI already finalized

Related information

 MPI_COMM_DUP

 MPI_INTERCOMM_MERGE

MPI_INTERCOMM_CREATE

364 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_INTERCOMM_MERGE, MPI_Intercomm_merge

Purpose

Creates an intra-communicator by merging the local and remote groups of an

inter-communicator.

C synopsis

#include <mpi.h>

int MPI_Intercomm_merge(MPI_Comm intercomm,int high,

 MPI_Comm *newintracomm);

C++ synopsis

#include mpi.h

MPI::Intracomm MPI::Intercomm::Merge(bool high);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_INTERCOMM_MERGE(INTEGER INTERCOMM,INTEGER HIGH,

 INTEGER NEWINTRACOMM,INTEGER IERROR)

Description

This subroutine creates an intra-communicator from the union of two groups

associated with intercomm. Tasks should provide the same high value within each

of the two groups. If tasks in one group provide the value high = false and tasks in

the other group provide the value high = true, the union orders the low group

before the high group. If all tasks provided the same high argument, the order of

the union is arbitrary. MPI_INTERCOMM_MERGE is blocking and collective within

the union of the two groups.

Parameters

intercomm

The inter-communicator (handle) (IN)

high

(logical) (IN)

newintracomm

The new intra-communicator (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid communicator

Invalid communicator type

must be inter-communicator

Inconsistent high within group

MPI not initialized

MPI already finalized

MPI_INTERCOMM_MERGE

Chapter 3. MPI subroutines and functions 365

Related information

MPI_INTERCOMM_CREATE

MPI_INTERCOMM_MERGE

366 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_IPROBE, MPI_Iprobe

Purpose

Checks to see if a message matching source, tag, and comm has arrived.

C synopsis

#include <mpi.h>

int MPI_Iprobe(int source,int tag,MPI_Comm comm,int *flag,

 MPI_Status *status);

C++ synopsis

#include mpi.h

bool MPI::Comm::Iprobe(int source, int tag) const;

#include mpi.h

bool MPI::Comm::Iprobe(int source, int tag, MPI::Status& status) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_IPROBE(INTEGER SOURCE,INTEGER TAG,INTEGER COMM,INTEGER FLAG,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine lets you check for incoming messages without actually receiving

them.

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true when there is a

message that can be received that matches the pattern specified by the arguments

source, tag, and comm. The call matches the same message that would have been

received by a call to MPI_RECV(..., source, tag, comm, status) issued at the same

point in the program and returns in status the same values that would have been

returned by MPI_RECV(). Otherwise, the call returns flag = false and leaves status

undefined.

When MPI_IPROBE returns flag = true, the content of the status object can be

accessed to find the source, tag and length of the probed message.

A subsequent receive operation processed with the same comm, and the source

and tag returned in status by MPI_IPROBE receives the message that was

matched by the probe, if no other intervening receive occurs after the initial probe.

source can be MPI_ANY_SOURCE and tag can be MPI_ANY_TAG. This allows

you to probe messages from any source and with any tag or both, but you must

provide a specific communicator with comm.

When a message is not received immediately after it is probed, the same message

can be probed for several times before it is received.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Some older MPI applications that were written for certain open source MPI

implementations include regular calls to MPI_IPROBE, not to detect messages, but

to allow the MPI library to make progress. This is neither required nor

MPI_IPROBE

Chapter 3. MPI subroutines and functions 367

recommended for PE MPI applications. These artificial MPI_IPROBE calls are not

required for program correctness and may hurt performance.

Parameters

source

A source rank or MPI_ANY_SOURCE (integer) (IN)

tag

A tag value or MPI_ANY_TAG (positive integer) (IN)

comm

A communicator (handle) (IN)

flag

(logical) (OUT)

status

A status object (Status) (INOUT). Note that in FORTRAN a single status object

is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In a threads environment, MPI_PROBE or MPI_IPROBE followed by MPI_RECV,

based on the information from the probe, may not be a threadsafe operation. You

must ensure that no other thread received the detected message.

An MPI_IPROBE cannot prevent a message from being cancelled successfully by

the sender, making it unavailable for the MPI_RECV. Structure your program to

ensure the message is not cancelled between the time it is detected by a call to

MPI_IPROBE or MPI_PROBE and the time the receive is posted.

Errors

Invalid communicator

Invalid source

source < 0 or source > = groupsize

Invalid status ignore value

Invalid tag

tag < 0

MPI already finalized

MPI not initialized

Related information

 MPI_PROBE

 MPI_RECV

MPI_IPROBE

368 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_IRECV, MPI_Irecv

Purpose

Performs a nonblocking receive operation.

C synopsis

#include <mpi.h>

int MPI_Irecv(void* buf,int count,MPI_Datatype datatype,

 int source,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::Comm::Irecv(void *buf, int count, const MPI::Datatype& datatype,

 int source, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_IRECV(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER SOURCE,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine starts a nonblocking receive and returns a handle to a request

object. You can later use the request to query the status of the communication or

wait for it to complete.

A nonblocking receive call means the system may start writing data into the receive

buffer. Once the nonblocking receive operation is called, do not access any part of

the receive buffer until the receive is complete.

Parameters

buf

The initial address of the receive buffer (choice) (OUT)

count

The number of elements in the receive buffer (integer) (IN)

datatype

The data type of each receive buffer element (handle) (IN)

source

The rank of source or MPI_ANY_SOURCE (integer) (IN)

tag

The message tag or MPI_ANY_TAG (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_IRECV

Chapter 3. MPI subroutines and functions 369

Notes

The message received must be less than or equal to the length of the receive

buffer. If all incoming messages do not fit without truncation, an overflow error

occurs. If a message arrives that is shorter than the receive buffer, then only those

locations corresponding to the actual message are changed. If an overflow occurs,

it is flagged at the MPI_WAIT or MPI_TEST. See “MPI_RECV, MPI_Recv” on page

402 for more information.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid source

source < 0 or source > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_RECV

 MPI_RECV_INIT

 MPI_WAIT

MPI_IRECV

370 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_IRSEND, MPI_Irsend

Purpose

Performs a nonblocking ready mode send operation.

C synopsis

#include <mpi.h>

int MPI_Irsend(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::Comm::Irsend(const void *buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_IRSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

MPI_IRSEND starts a ready mode, nonblocking send operation. The send buffer

may not be modified until the request has been completed by MPI_WAIT,

MPI_TEST, or one of the other MPI wait or test functions.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of the destination task in comm (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See “MPI_RSEND, MPI_Rsend” on page 420 for more information.

MPI_IRSEND

Chapter 3. MPI subroutines and functions 371

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

No receive posted

error flagged at destination

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update

Related information

 MPI_RSEND

 MPI_RSEND_INIT

 MPI_WAIT

MPI_IRSEND

372 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_IS_THREAD_MAIN, MPI_Is_thread_main

Purpose

Determines whether the calling thread is the thread that called MPI_INIT or

MPI_INIT_THREAD.

C synopsis

#include <mpi.h>

int MPI_Is_thread_main(int *flag);

C++ synopsis

#include mpi.h

bool MPI::Is_thread_main();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_IS_THREAD_MAIN(LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine can be called by a thread to find out whether it is the main thread

(the thread that called MPI_INIT or MPI_INIT_THREAD). Because MPI_FINALIZE

must be called on the same thread that called MPI_INIT or MPI_INIT_THREAD, this

subroutine can be used when the identity of the main thread is no longer known.

Parameters

flag

Set to true if the calling thread is the main thread; otherwise it is flase (logical)

(OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Errors

Fatal errors:

MPI already finalized

MPI not initialized

Related information

 MPI_INIT

 MPI_INIT_THREAD

MPI_IS_THREAD_MAIN

Chapter 3. MPI subroutines and functions 373

MPI_ISEND, MPI_Isend

Purpose

Performs a nonblocking standard mode send operation.

C synopsis

#include <mpi.h>

int MPI_Isend(void* buf,int count,MPI_Datatype datatype,int dest,

 int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::Comm::Isend(const void *buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ISEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine starts a nonblocking standard mode send. The send buffer may not

be modified until the request has been completed by MPI_WAIT, MPI_TEST, or one

of the other MPI wait or test functions.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of the destination task in comm (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See “MPI_SEND, MPI_Send” on page 432 for more information.

MPI_ISEND

374 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update

Related information

 MPI_SEND

 MPI_SEND_INIT

 MPI_WAIT

MPI_ISEND

Chapter 3. MPI subroutines and functions 375

MPI_ISSEND, MPI_Issend

Purpose

Performs a nonblocking synchronous mode send operation.

C synopsis

#include <mpi.h>

int MPI_Issend(void* buf,int count,MPI_Datatype datatype,int dest,

 int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Request MPI::Comm::Issend(const void *buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_ISSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

MPI_ISSEND starts a synchronous mode, nonblocking send. The send buffer may

not be modified until the request has been completed by MPI_WAIT, MPI_TEST, or

one of the other MPI wait or test functions.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of the destination task in comm (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See “MPI_SSEND, MPI_Ssend” on page 441 for more information.

MPI_ISSEND

376 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update

Related information

 MPI_SSEND

 MPI_SSEND_INIT

 MPI_WAIT

MPI_ISSEND

Chapter 3. MPI subroutines and functions 377

MPI_KEYVAL_CREATE, MPI_Keyval_create

Purpose

Generates a new communicator attribute key.

C synopsis

#include <mpi.h>

int MPI_Keyval_create(MPI_Copy_function *copy_fn,

 MPI_Delete_function *delete_fn,int *keyval,

 void* extra_state);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_KEYVAL_CREATE(EXTERNAL COPY_FN,EXTERNAL DELETE_FN,

 INTEGER KEYVAL,INTEGER EXTRA_STATE,INTEGER IERROR)

Description

This subroutine generates a new attribute key. Keys are locally unique in a task,

opaque to the user, and are explicitly stored in integers. Once allocated, keyval can

be used to associate attributes and access them on any locally-defined

communicator. copy_fn is invoked when a communicator is duplicated by

MPI_COMM_DUP. It should be of type MPI_COPY_FUNCTION, which is defined

as follows:

In C:

typedef int MPI_Copy_function (MPI_Comm oldcomm,int keyval,

 void *extra_state,void *attribute_val_in,

 void *attribute_val_out,int *flag);

In FORTRAN:

SUBROUTINE COPY_FUNCTION(INTEGER OLDCOMM,INTEGER KEYVAL,

 INTEGER EXTRA_STATE,INTEGER ATTRIBUTE_VAL_IN,

 INTEGER ATTRIBUTE_VAL_OUT,LOGICAL FLAG,INTEGER IERROR)

 The attribute_val_in parameter is the value of the attribute. The attribute_val_out

parameter is the address of the value, so the function can set a new value. The

attribute_val_out parameter is logically a void**, but it is prototyped as void*, to

avoid the need for complex casting.

You can use these predefined functions:

MPI_DUP_FN

Function to always copy

MPI_NULL_COPY_FN

Function to never copy

delete_fn is invoked when a communicator is deleted by MPI_COMM_FREE or

when a call is made to MPI_ATTR_DELETE. A call to MPI_ATTR_PUT that

overlays a previously-put attribute also causes delete_fn to be called. It should be

defined as follows:

In C:

typedef int MPI_Delete_function (MPI_Comm comm,int keyval,

 void *attribute_val, void *extra_state);

MPI_KEYVAL_CREATE

378 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

In FORTRAN:

SUBROUTINE DELETE_FUNCTION(INTEGER COMM,INTEGER KEYVAL,

 INTEGER ATTRIBUTE_VAL,INTEGER EXTRA_STATE,

 INTEGER IERROR)

 You can use the predefined function MPI_NULL_DELETE_FN if no special handling

of attribute deletions is required.

In FORTRAN, the value of extra_state is recorded by MPI_KEYVAL_CREATE and

the callback functions should not attempt to modify this value.

The MPI standard requires that when copy_fn or delete_fn gives a return code

other than MPI_SUCCESS, the MPI routine in which this occurs must fail. The

standard does not suggest that the copy_fn or delete_fn return code be used as the

MPI routine’s return value. The standard does require that an MPI return code be in

the range between MPI_SUCCESS and MPI_ERR_LASTCODE. It places no range

limits on copy_fn or delete_fn return codes. For this reason, a specific error code is

provided for a copy_fn failure and another is provided for a delete_fn failure. These

error codes can be found in error class MPI_ERR_OTHER. The copy_fn return

code or the delete_fn return code is not preserved.

Parameters

copy_fn

The copy callback function for keyval (IN)

delete_fn

The delete callback function for keyval (IN)

keyval

An integer specifying the key value for future access (OUT)

extra_state

The extra state for callback functions (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_CREATE_KEYVAL supersedes MPI_KEYVAL_CREATE.

MPI_KEYVAL_CREATE does not inter-operate with

MPI_COMM_CREATE_KEYVAL. The FORTRAN bindings for MPI-1 caching

functions presume that an attribute is an INTEGER. The MPI-2 caching bindings

use INTEGER (KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses

64-bit addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_ATTR_DELETE

 MPI_ATTR_PUT

 MPI_COMM_DUP

 MPI_COMM_FREE

MPI_KEYVAL_CREATE

Chapter 3. MPI subroutines and functions 379

MPI_KEYVAL_FREE, MPI_Keyval_free

Purpose

Marks a communicator attribute key for deallocation.

C synopsis

#include <mpi.h>

int MPI_Keyval_free(int *keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_KEYVAL_FREE(INTEGER KEYVAL,INTEGER IERROR)

Description

This subroutine sets keyval to MPI_KEYVAL_INVALID and marks the attribute key

for deallocation. You can free an attribute key that is in use because the actual

deallocation occurs only when all active references to it are complete. These

references, however, need to be explicitly freed. Use calls to MPI_ATTR_DELETE

to free one attribute instance. To free all attribute instances associated with a

communicator, use MPI_COMM_FREE.

Parameters

keyval

The attribute key (integer) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_COMM_FREE_KEYVAL supersedes MPI_KEYVAL_FREE.

MPI_KEYVAL_FREE does not inter-operate with MPI_COMM_FREE_KEYVAL. The

FORTRAN bindings for MPI-1 caching functions presume that an attribute is an

INTEGER. The MPI-2 caching bindings use INTEGER

(KIND=MPI_ADDRESS_KIND). In an MPI implementation that uses 64-bit

addresses and 32-bit INTEGERS, the two formats would be incompatible.

Errors

Invalid attribute key

attribute key is undefined

Predefined attribute key

attribute key is predefined

MPI not initialized

MPI already finalized

Related information

 MPI_ATTR_DELETE

 MPI_COMM_FREE

MPI_KEYVAL_FREE

380 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Op_c2f

Purpose

Translates a C reduction operation handle into a FORTRAN handle to the same

operation.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Op_c2f(MPI_Op op);

Description

This function does not have C++ or FORTRAN bindings. MPI_Op_c2f translates a

C reduction operation handle into a FORTRAN handle to the same operation; it

maps a null handle into a null handle and a non-valid handle into a non-valid

handle. The converted handle is returned as the function’s value. There is no error

detection or return code.

Parameters

op The reduction operation (handle) (IN)

Errors

None.

Related information

 MPI_Op_f2c

MPI_Op_c2f

Chapter 3. MPI subroutines and functions 381

MPI_OP_CREATE, MPI_Op_create

Purpose

Binds a user-defined reduction operation to an op handle.

C synopsis

#include <mpi.h>

int MPI_Op_create(MPI_User_function *function,int commute,MPI_Op *op);

C++ synopsis

#include mpi.h

void MPI::Op::Init(MPI::User_function *func, bool commute);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_OP_CREATE(EXTERNAL FUNCTION,INTEGER COMMUTE,INTEGER OP,INTEGER IERROR)

Description

This subroutine binds a user-defined reduction operation to an op handle, which

you can then use in MPI_REDUCE, MPI_ALLREDUCE, MPI_REDUCE_SCATTER,

MPI_SCAN, and MPI_EXSCAN.

The user-defined operation is assumed to be associative. If commute = true, then

the operation must be both commutative and associative. If commute = false, then

the order of the operation is fixed. The order is defined in ascending, task rank

order and begins with task zero.

function is a user-defined function. It must have the following four arguments: invec,

inoutvec, len, and datatype.

The following is the ANSI-C prototype for the function:

typedef void MPI_User_function(void *invec, void *inoutvec,

 int *len, MPI_Datatype *datatype);

The following is the FORTRAN declaration for the function:

SUBROUTINE USER_FUNCTION(INVEC(*), INOUTVEC(*), LEN, TYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

 INTEGER LEN, TYPE

Parameters

function

The user-defined reduction function (function) (IN)

commute

Set to true if commutative; otherwise it is false (IN)

op The reduction operation (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See IBM Parallel Environment: MPI Programming Guide for information about

reduction functions.

MPI_OP_CREATE

382 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

Errors

Null function

MPI not initialized

MPI already finalized

Related information

 MPI_ALLREDUCE

 MPI_OP_FREE

 MPI_REDUCE

 MPI_REDUCE_SCATTER

 MPI_SCAN

MPI_OP_CREATE

Chapter 3. MPI subroutines and functions 383

MPI_Op_f2c

Purpose

Returns a C reduction operation handle to an operation.

C synopsis

#include <mpi.h>

MPI_Op MPI_Op_f2c(MPI_Fint op);

Description

This function does not have C++ or FORTRAN bindings. MPI_Op_f2c returns a C

handle to an operation. If op is a valid FORTRAN handle to n operation,

MPI_Op_f2c returns a valid C handle to that same group. If op is set to the

FORTRAN value MPI_OP_NULL, MPI_Op_f2c returns the equivalent null C handle.

If op is not a valid FORTRAN handle, MPI_Op_f2c returns a non-valid C handle.

The converted handle is returned as the function’s value. There is no error

detection or return code.

Parameters

op The reduction operation (handle) (IN)

Errors

None.

Related information

 MPI_Op_c2f

MPI_Op_f2c

384 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_OP_FREE, MPI_Op_free

Purpose

Marks a user-defined reduction operation for deallocation.

C synopsis

#include <mpi.h>

int MPI_Op_free(MPI_Op *op);

C++ synopsis

#include mpi.h

void MPI::Op::Free();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_OP_FREE(INTEGER OP,INTEGER IERROR)

Description

This subroutine marks a reduction operation for deallocation, and set op to

MPI_OP_NULL. Actual deallocation occurs when the operation’s reference count is

zero.

Parameters

op The reduction operation (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid operation

Predefined operation

MPI not initialized

MPI already finalized

Related information

 MPI_OP_CREATE

MPI_OP_FREE

Chapter 3. MPI subroutines and functions 385

MPI_PACK, MPI_Pack

Purpose

Packs the message in the specified send buffer into the specified buffer space.

C synopsis

#include <mpi.h>

int MPI_Pack(void* inbuf,int incount,MPI_Datatype datatype,

 void *outbuf,int outsize,int *position,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Datatype::Pack(const void* inbuf, int incount, void* outbuf,

 int outsize, int& position, const MPI::Comm& comm)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_PACK(CHOICE INBUF,INTEGER INCOUNT,INTEGER DATATYPE,CHOICE OUTBUF,

 INTEGER OUTSIZE,INTEGER POSITION,INTEGER COMM,INTEGER IERROR)

Description

This subroutine packs the message specified by inbuf, incount, and datatype into

the buffer space specified by outbuf and outsize. The input buffer is any

communication buffer allowed in MPI_SEND. The output buffer is any contiguous

storage space containing outsize bytes and starting at the address outbuf.

The input value of position is the beginning offset in the output buffer that will be

used for packing. The output value of position is the offset in the output buffer

following the locations occupied by the packed message. comm is the

communicator that will be used for sending the packed message.

Parameters

inbuf

The input buffer start (choice) (IN)

incount

An integer specifying the number of input data items (IN)

datatype

The data type of each input data item (handle) (IN)

outbuf

The output buffer start (choice) (OUT)

outsize

An integer specifying the output buffer size in bytes (OUT)

position

The current position in the output buffer counted in bytes (integer) (INOUT)

comm

The communicator for sending the packed message (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_PACK

386 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Notes

MPI_PACK must be used with some care in 64-bit applications because outsize and

position are integers and can be subject to overflow.

Errors

Invalid incount

incount < 0

Invalid datatype

Type not committed

Invalid communicator

Outbuf too small

Negative length or position for buffer

outsize < 0 or position < 0

MPI not initialized

MPI already finalized

Related information

 MPI_PACK_SIZE

 MPI_UNPACK

MPI_PACK

Chapter 3. MPI subroutines and functions 387

MPI_PACK_EXTERNAL, MPI_Pack_external

Purpose

Packs the message in the specified send buffer into the specified buffer space,

using the external32 data format.

C synopsis

#include <mpi.h>

int MPI_Pack_external(char *datarep, void *inbuf, int incount,

 MPI_Datatype datatype, void *outbuf,

 MPI_Aint outsize, MPI_Aint *position);

C++ synopsis

#include mpi.h

void MPI::Datatype::Pack_external(const char* datarep, const void* inbuf,

 int incount, void* outbuf, MPI::Aint outsize,

 MPI_Aint& position) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_PACK_EXTERNAL(CHARACTER*(*) DATAREP, CHOICE INBUF(*), INTEGER INCOUNT,

 INTEGER DATATYPE, CHOICE OUTBUF(*), INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE,

 INTEGER(KIND=MPI_ADDRESS_KIND) POSITION, INTEGER IERROR)

Description

This subroutine packs the message specified by inbuf, incount, and datatype into

the buffer space specified by outbuf and outsize. The input buffer is any

communication buffer allowed in MPI_SEND. The output buffer is any contiguous

storage space containing outsize bytes and starting at the address outbuf.

The input value of position is the beginning offset in the output buffer that will be

used for packing. The output value of position is the offset in the output buffer

following the locations occupied by the packed message.

Parameters

datarep

The data representation (string) (IN)

inbuf

The input buffer start (choice) (IN)

incount

An integer specifying the number of input data items (IN)

datatype

The data type of each input data item (handle) (IN)

outbuf

The output buffer start (choice) (OUT)

outsize

An integer specifying the output buffer size, in bytes (IN)

position

The current position in the output buffer, in bytes (integer) (INOUT)

MPI_PACK_EXTERNAL

388 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In FORTRAN, MPI_PACK_EXTERNAL returns an argument of type

INTEGER(KIND=MPI_ADDRESS_KIND), where type MPI_Aint is used in C. Such

variables may be declared as INTEGER*4 in purely 32-bit codes and as

INTEGER*8 in 64-bit codes; KIND=MPI_ADDRESS_KIND works correctly in either

mode.

Errors

Invalid datarep

Invalid datatype

Invalid incount

incount < 0

Negative length or position for buffer

outsize < 0 or position < 0

Outbuf too small

Type not committed

MPI already finalized

MPI not initialized

Related information

 MPI_PACK_EXTERNAL_SIZE

 MPI_UNPACK_EXTERNAL

MPI_PACK_EXTERNAL

Chapter 3. MPI subroutines and functions 389

MPI_PACK_EXTERNAL_SIZE, MPI_Pack_external_size

Purpose

Returns the number of bytes required to hold the data, using the external32 data

format.

C synopsis

#include <mpi.h>

int MPI_Pack_external_size(char *datarep, int incount,

 MPI_Datatype datatype,MPI_Aint *size);

C++ synopsis

#include mpi.h

MPI::Aint MPI::Datatype::Pack_external_size(const char* datarep, int incount) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_PACK_EXTERNAL_SIZE(CHARACTER*(*) DATAREP, INTEGER INCOUNT, INTEGER DATATYPE,

 INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, INTEGER IERROR

Description

This subroutine returns the number of bytes required to pack incount replications of

the data type. You can use MPI_PACK_EXTERNAL_SIZE to determine the size

required for a packing buffer.

Parameters

datarep

The data representation (string) (IN)

incount

An integer specifying the number of input data items (IN)

datatype

The data type of each input data item (handle) (IN)

size

The size of the output buffer, in bytes (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In FORTRAN, MPI_PACK_EXTERNAL_SIZE returns a size argument of type

INTEGER(KIND=MPI_ADDRESS_KIND), where type MPI_Aint is used in C. Such

variables may be declared as INTEGER*4 in purely 32-bit codes and as

INTEGER*8 in 64-bit codes; KIND=MPI_ADDRESS_KIND works correctly in either

mode.

Errors

Invalid datarep

Invalid datatype

Type is not committed

MPI_PACK_EXTERNAL_SIZE

390 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI not initialized

MPI already finalized

Invalid incount

incount < 0

Related information

 MPI_PACK_EXTERNAL

 MPI_UNPACK_EXTERNAL

MPI_PACK_EXTERNAL_SIZE

Chapter 3. MPI subroutines and functions 391

MPI_PACK_SIZE, MPI_Pack_size

Purpose

Returns the number of bytes required to hold the data.

C synopsis

#include <mpi.h>

int MPI_Pack_size(int incount,MPI_Datatype datatype,MPI_Comm comm, int *size);

C++ synopsis

#include mpi.h

int MPI::Datatype::Pack_size(int incount, const MPI::Comm& comm) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_PACK_SIZE(INTEGER INCOUNT,INTEGER DATATYPE,INTEGER COMM,

 INTEGER SIZE,INTEGER IERROR)

Description

This subroutine returns the number of bytes required to pack incount replications of

the data type. You can use MPI_PACK_SIZE to determine the size required for a

packing buffer or to track space needed for buffered sends.

Parameters

incount

An integer specifying the count argument to a packing call (IN)

datatype

The data type argument to a packing call (handle) (IN)

comm

The communicator to a packing call (handle) (IN)

size

The size of packed message in bytes (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_PACK_SIZE must be used with some care in 64-bit applications because the

size argument is an integer and can be subject to overflow.

Errors

Invalid datatype

Type is not committed

MPI not initialized

MPI already finalized

Invalid communicator

Invalid incount

incount < 0

MPI_PACK_SIZE

392 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Size overflow

64-bit applications only

Related information

 MPI_PACK

MPI_PACK_SIZE

Chapter 3. MPI subroutines and functions 393

MPI_PCONTROL, MPI_Pcontrol

Purpose

Provides profiler control.

C synopsis

#include <mpi.h>

int MPI_Pcontrol(const int level, ...);

C++ synopsis

#include mpi.h

void MPI::Pcontrol(const int level, ...);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_PCONTROL(INTEGER LEVEL, ...)

Description

MPI_PCONTROL is a placeholder to let applications run with or without an

independent profiling package without modification. MPI implementations do not use

this subroutine and do not have any control of the implementation of the profiling

code.

Calls to this subroutine allow a profiling package to be controlled from MPI

programs. The nature of control and the arguments required are determined by the

profiling package. The MPI library routine by this name returns to the caller without

any action.

Parameters

level

The profiling level (IN)

 The proper values for level and the meanings of those values are determined

by the profiler being used.

... 0 or more parameters

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI does not report any errors for MPI_PCONTROL.

MPI_PCONTROL

394 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_PROBE, MPI_Probe

Purpose

Waits until a message matching source, tag, and comm arrives.

C synopsis

#include <mpi.h>

int MPI_Probe(int source,int tag,MPI_Comm comm,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::Comm::Probe(int source, int tag) const;

#include mpi.h

void MPI::Comm::Probe(int source, int tag, MPI::Status& status) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_PROBE(INTEGER SOURCE,INTEGER TAG,INTEGER COMM,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

MPI_PROBE behaves like MPI_IPROBE. It lets you check for an incoming

message without actually receiving it. MPI_PROBE is different in that it is a blocking

call that returns only after a matching message has been found.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Parameters

source

A source rank or MPI_ANY_SOURCE (integer) (IN)

tag

A source tag or MPI_ANY_TAG (positive integer) (IN)

comm

A communicator (handle) (IN)

status

A status object (Status) (INOUT). Note that in FORTRAN a single status object

is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In a threads environment, MPI_PROBE or MPI_IPROBE followed by MPI_RECV,

based on the information from the probe, may not be a threadsafe operation. You

must make sure that no other thread received the detected message.

An MPI_IPROBE cannot prevent a message from being cancelled successfully by

the sender, making it unavailable for the MPI_RECV. Structure your program to

MPI_PROBE

Chapter 3. MPI subroutines and functions 395

ensure the message is not cancelled between the time it is detected by a call to

MPI_IPROBE or MPI_PROBE and the time the receive is posted.

Errors

Invalid source

source < 0 or source > = groupsize

Invalid status ignore value

Invalid tag

tag < 0

Invalid communicator

MPI not initialized

MPI already finalized

Related information

 MPI_IPROBE

 MPI_RECV

MPI_PROBE

396 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_PUT, MPI_Put

Purpose

Transfers data from the origin task to a window at the target task.

C synopsis

#include <mpi.h>

int MPI_Put (void *origin_addr, int origin_count,

 MPI_Datatype origin_datatype, int target_rank,

 MPI_Aint target_disp, int target_count,

 MPI_Datatype target_datatype, MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Put(const void* origin_addr, int origin_count,

 const MPI::Datatype& origin_datatype, int target_rank,

 MPI::Aint target_disp, int target_count,

 const MPI::Datatype& target_datatype) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_PUT(CHOICE ORIGIN_ADDR, INTEGER ORIGIN_COUNT, INTEGER ORIGIN_DATATYPE,

 INTEGER TARGET_RANK, INTEGER TARGET_DISP, INTEGER TARGET_COUNT,

 INTEGER TARGET_DATATYPE, INTEGER WIN, INTEGER IERROR)

Description

MPI_PUT transfers origin_count successive entries of the type specified by

origin_datatype, starting at address origin_addr on the origin task to the target task

specified by win and target_rank.

The data are written in the target buffer at address (target_addr = window_base +

target_disp * disp_unit), where window_base and disp_unit are the base address

and window displacement unit specified at window initialization, by the target task.

The target buffer is specified by the arguments target_count and target_datatype.

The data transfer is the same as that which would occur if the origin task issued a

send operation with arguments origin_addr, origin_count, origin_datatype,

target_rank, tag, comm, and the target task issued a receive operation with

arguments target_addr, target_count, target_datatype, source, tag, comm, where

target_addr is the target buffer address computed as shown in the previous

paragraph, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar

message-passing communication. The target_datatype may not specify overlapping

entries in the target buffer. The message sent must fit, without truncation, in the

target buffer. Furthermore, the target buffer must fit in the target window.

The target_datatype argument is a handle to a data type object that is defined at

the origin task, even though it defines a data layout in the target task memory. This

does not cause any problems in a homogeneous environment. In a heterogeneous

environment, only portable data types are valid.

MPI_PUT

Chapter 3. MPI subroutines and functions 397

The data type object is interpreted at the target task. The outcome is as if the target

data type object were defined at the target task, by the same sequence of calls

used to define it at the origin task. The target data type must contain relative

displacements, not absolute addresses.

Parameters

origin_addr

The initial address of the origin buffer (choice) (IN)

origin_count

The number of entries in origin buffer (nonnegative integer) (IN)

origin_datatype

The data type of each entry in the origin buffer (handle) (IN)

target_rank

The rank of the target (nonnegative integer) (IN)

target_disp

The displacement from the start of the window to the target buffer (nonnegative

integer) (IN)

target_count

The number of entries in the target buffer (nonnegative integer) (IN)

target_datatype

The data type of each entry in the target buffer (handle) (IN)

win

The window object used for communication (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_PUT is a special case of MPI_ACCUMULATE, with the operation

MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have

different constraints on concurrent updates.

MPI_PUT does not require that data move from origin to target until some

synchronization occurs. PE MPI may try to combine multiple puts to a target within

an epoch into a single data transfer. The user must not modify the source buffer or

make any assumption about the contents of the destination buffer until after a

synchronization operation has closed the epoch.

On some systems, there may be reasons to use special memory for one-sided

communication buffers. MPI_ALLOC_MEM may be the preferred way to allocate

buffers on these systems. With PE MPI, there is no advantage to using

MPI_ALLOC_MEM, but you can use it to improve the portability of your MPI code.

MPI_PUT is more efficient than MPI_ACCUMULATE with MPI_REPLACE because

MPI_PUT does not provide any guarantee for conflicting updates of a target object.

For example, if more than one origin does an MPI_ACCUMULATE of MPI_LONGs

with MPI_REPLACE to the same target and they touch the same memory range,

MPI_ACCUMULATE will ensure each individual MPI_LONG replacement is atomic.

With conflicting MPI_PUTs there is a risk that some bytes of the MPI_LONG will be

from one MPI_PUT and some bytes will be from another MPI_PUT.

MPI_PUT

398 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|
|
|
|
|

Use MPI_PUT if you can be confident that the RMAs in a single epoch will never

overlap in the target memory, and use MPI_ACCUMULATE with MPI_REPLACE if

conflicting updates are possible.

Errors

Invalid origin count (count)

Invalid origin datatype (handle)

Invalid target rank (rank)

Invalid target displacement (value)

Invalid target count (count)

Invalid target datatype (handle)

Invalid window handle (handle)

Target outside access group

Origin buffer too small (size)

Target buffer ends outside target window

Target buffer starts outside target window

RMA communication call outside access epoch

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Related information

 MPI_ACCUMULATE

 MPI_GET

 MPI_WIN_COMPLETE

 MPI_WIN_FENCE

 MPI_WIN_LOCK

 MPI_WIN_POST

 MPI_WIN_START

 MPI_WIN_TEST

 MPI_WIN_UNLOCK

 MPI_WIN_WAIT

MPI_PUT

Chapter 3. MPI subroutines and functions 399

|
|
|

MPI_QUERY_THREAD, MPI_Query_thread

Purpose

Returns the current level of threads support.

C synopsis

#include <mpi.h>

int MPI_Query_thread(int *provided);

C++ synopsis

#include mpi.h

int MPI::Query_thread();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_QUERY_THREAD(INTEGER PROVIDED, INTEGER IERROR)

Description

This subroutine returns the current level of thread support in the provided argument.

This will be the value returned in provided by MPI_INIT_THREAD, if MPI was

initialized by a call to MPI_INIT_THREAD. The possible values for provided are

listed in increasing order of thread support:

MPI_THREAD_SINGLE Only one thread will run.

MPI_THREAD_FUNNELED The task can be multi-threaded, but only the main

thread will make MPI calls. All MPI calls are

funneled to the main thread.

MPI_THREAD_SERIALIZED The task can be multi-threaded and multiple

threads may make MPI calls, but only one at a

time: MPI calls are not made concurrently from two

distinct threads. All MPI calls are ″serialized″ by

explicit application thread synchronizations.

MPI_THREAD_MULTIPLE Multiple threads can call MPI with no restrictions.

These values are monotonic: MPI_THREAD_SINGLE, MPI_THREAD_FUNNELED,

MPI_THREAD_SERIALIZED, MPI_THREAD_MULTIPLE.

Parameters

provided

The level of thread support that is provided (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In normal use, PE MPI always provides a level of thread support equivalent to

MPI_THREAD_MULTIPLE. If the MPI_SINGLE_THREAD environment variable is

set to yes, MPI_QUERY_THREAD returns MPI_THREAD_FUNNELED.

MPI_QUERY_THREAD

400 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Fatal errors:

MPI already finalized

MPI not initialized

Related information

 MPI_INIT_THREAD

MPI_QUERY_THREAD

Chapter 3. MPI subroutines and functions 401

MPI_RECV, MPI_Recv

Purpose

Performs a blocking receive operation.

C synopsis

#include <mpi.h>

int MPI_Recv(void* buf,int count,MPI_Datatype datatype,

 int source,int tag,MPI_Comm comm,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& datatype,

 int source, int tag) const;

#include mpi.h

void MPI::Comm::Recv(void* buf, int count, const MPI::Datatype& datatype,

 int source, int tag, MPI::Status& status) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_RECV(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER SOURCE,

 INTEGER TAG,INTEGER COMM,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

MPI_RECV is a blocking receive operation. The receive buffer is storage containing

room for count consecutive elements of the type specified by datatype, starting at

address buf.

The message received must be less than or equal to the length of the receive

buffer. If all incoming messages do not fit without truncation, an overflow error

occurs. If a message arrives that is shorter than the receive buffer, then only those

locations corresponding to the actual message are changed.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Parameters

buf

The initial address of the receive buffer (choice) (OUT)

count

The number of elements to be received (integer) (IN)

datatype

The data type of each receive buffer element (handle) (IN)

source

The rank of the source task in comm or MPI_ANY_SOURCE (integer) (IN)

tag

The message tag or MPI_ANY_TAG (positive integer) (IN)

comm

The communicator (handle) (IN)

MPI_RECV

402 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

status

The status object (Status) (INOUT). Note that in FORTRAN a single status

object is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid count

count < 0

Invalid datatype

Invalid status ignore value

Type not committed

Invalid source

source < 0 or source > = groupsize

Invalid tag

tag < 0

Invalid comm

Truncation occurred

MPI not initialized

MPI already finalized

Related information

 MPI_IRECV

 MPI_SEND

 MPI_SENDRECV

MPI_RECV

Chapter 3. MPI subroutines and functions 403

MPI_RECV_INIT, MPI_Recv_init

Purpose

Creates a persistent receive request.

C synopsis

#include <mpi.h>

int MPI_Recv_init(void* buf,int count,MPI_Datatype datatype,

 int source,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Prequest MPI::Comm::Recv_init(void* buf, int count,

 const MPI::Datatype& datatype,

 int source, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_RECV_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER SOURCE,INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine creates a persistent communication request for a receive operation.

A communication started with MPI_RECV_INIT is completed by a call to one of the

MPI wait or test operations. The argument buf is marked as OUT because the user

gives permission to write to the receive buffer by passing the argument to

MPI_RECV_INIT.

A persistent communication request is inactive after it is created. No active

communication is attached to the request.

A send or receive communication using a persistent request is initiated by the

function MPI_START.

Parameters

buf

The initial address of the receive buffer (choice) (OUT)

count

The number of elements to be received (integer) (IN)

datatype

The type of each element (handle) (IN)

source

The rank of source or MPI_ANY_SOURCE (integer) (IN)

tag

The tag or MPI_ANY_TAG (integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

MPI_RECV_INIT

404 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See “MPI_RECV, MPI_Recv” on page 402 for more information.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid source

source < 0 or source > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_IRECV

 MPI_START

MPI_RECV_INIT

Chapter 3. MPI subroutines and functions 405

MPI_REDUCE, MPI_Reduce

Purpose

Applies a reduction operation to the vector sendbuf over the set of tasks specified

by comm and places the result in recvbuf on root.

C synopsis

#include <mpi.h>

int MPI_Reduce(void* sendbuf,void* recvbuf,int count,

 MPI_Datatype datatype,MPI_Op op,int root,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Reduce(const void* sendbuf, void* recvbuf, int count,

 const MPI::Datatype& datatype, const MPI::Op& op,

 int root) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_REDUCE(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,

 INTEGER DATATYPE,INTEGER OP,INTEGER ROOT,INTEGER COMM,

 INTEGER IERROR)

Description

This subroutine applies a reduction operation to the vector sendbuf over the set of

tasks specified by comm and places the result in recvbuf on root.

The input buffer and the output buffer have the same number of elements with the

same type. The arguments sendbuf, count, and datatype define the send or input

buffer. The arguments recvbuf, count and datatype define the output buffer.

MPI_REDUCE is called by all group members using the same arguments for count,

datatype, op, and root. If a sequence of elements is provided to a task, the

reduction operation is processed element-wise on each entry of the sequence. This

is an example. If the operation is MPI_MAX and the send buffer contains two

elements that are floating point numbers (count = 2 and datatype = MPI_FLOAT),

recvbuf(1) = global max(sendbuf(1)) and recvbuf(2) = global max(sendbuf(2)).

Users can define their own operations or use the predefined operations provided by

MPI. User-defined operations can be overloaded to operate on several data types,

either basic or derived. The argument datatype of MPI_REDUCE must be

compatible with op.

The parameter op may be a predefined reduction operation or a user-defined

function, created using MPI_OP_CREATE. This is a list of predefined reduction

operations:

Operation Definition

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_BXOR Bitwise XOR

MPI_LAND Logical AND

MPI_LOR Logical OR

MPI_REDUCE

406 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

||

||

||

||

||

||

MPI_LXOR Logical XOR

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_PROD Product

MPI_SUM Sum

The ″in place″ option for intra-communicators is specified by passing the value

MPI_IN_PLACE to the argument sendbuf at the root. In this case, the input data is

taken at the root from the receive buffer, where it will be replaced by the output

data.

If comm is an inter-communicator, the call involves all tasks in the

inter-communicator, but with one group (group A) defining the root task. All tasks in

the other group (group B) pass the same value in argument root, which is the rank

of the root in group A. The root passes the value MPI_ROOT in root. All other tasks

in group A pass the value MPI_PROC_NULL in root. Only send buffer arguments

are significant in group B, and only receive buffer arguments are significant at the

root.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The address of the send buffer (choice) (IN)

recvbuf

The address of the receive buffer (choice, significant only at root) (OUT)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of elements of the send buffer (handle) (IN)

op The reduction operation (handle) (IN)

root

The rank of the root task (integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See IBM Parallel Environment: MPI Programming Guide.

MPI_REDUCE

Chapter 3. MPI subroutines and functions 407

||

||

||

||

||

||

||

The MPI standard urges MPI implementations to use the same evaluation order for

reductions every time, even if this negatively affects performance. PE MPI adjusts

its reduce algorithms for the optimal performance on a given task distribution. The

MPI standard suggests, but does not mandate, this sacrifice of performance. PE

MPI maintains a balance between performance and the MPI standard's

recommendation. PE MPI does not promise that any two runs with the same tack

count will give the same answer, in the least significant bits, for floating point

reductions. Changes to evaluation order may produce different rounding effects.

However, PE MPI does promise that two calls to MPI_REDUCE (or

MPI_ALLREDUCE) on the same communicator with the same inputs, or two runs

that use the same task count and the same distribution across nodes, will always

give identical results.

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid op

Invalid root

 For an intra-communicator: root < 0 or root >= groupsize

 For an inter-communicator: root < 0 and is neither MPI_ROOT nor

MPI_PROC_NULL, or root >= groupsize of the remote group

Invalid communicator

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent root

Inconsistent message length

Related information

 MPE_IREDUCE

 MPI_ALLREDUCE

 MPI_OP_CREATE

 MPI_REDUCE_SCATTER

 MPI_SCAN

MPI_REDUCE

408 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_REDUCE_SCATTER, MPI_Reduce_scatter

Purpose

Applies a reduction operation to the vector sendbuf over the set of tasks specified

by comm and scatters the result according to the values in recvcounts.

C synopsis

#include <mpi.h>

int MPI_Reduce_scatter(void* sendbuf,void* recvbuf,int *recvcounts,

 MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Reduce_scatter(const void* sendbuf, void* recvbuf,

 int recvcounts[],

 const MPI::Datatype& datatype,

 const MPI::Op& op) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_REDUCE_SCATTER(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER RECVCOUNTS(*),

 INTEGER DATATYPE,INTEGER OP,INTEGER COMM,INTEGER IERROR)

Description

This subroutine first performs an element-wise reduction on a vector of count = the

sum of i recvcounts[i] elements in the send buffer defined by sendbuf, count, and

datatype. Next, the resulting vector is split into n disjoint segments, where n is the

number of members in the group. Segment i contains recvcounts[i] elements. The

ith segment is sent to task i and stored in the receive buffer defined by recvbuf,

recvcounts[i], and datatype.

MPI_REDUCE_SCATTER is functionally equivalent to MPI_REDUCE with count

equal to the sum of recvcounts[i] followed by MPI_SCATTERV with sendcounts

equal to recvcounts.

The ″in place″ option for intra-communicators is specified by passing

MPI_IN_PLACE in the sendbuf argument. In this case, the input data is taken from

the top of the receive buffer. The area occupied by the input data may be either

longer or shorter than the data filled by the output data.

If comm is an inter-communicator, the result of the reduction of the data provided by

tasks in group A is scattered among tasks in group B, and vice versa. Within each

group, all tasks provide the same recvcounts argument, and the sum of the

recvcounts entries should be the same for the two groups.

MPI_IN_PLACE is not supported for inter-communicators.

The parameter op may be a predefined reduction operation or a user-defined

function, created using MPI_OP_CREATE. This is a list of predefined reduction

operations:

Operation Definition

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_REDUCE_SCATTER

Chapter 3. MPI subroutines and functions 409

|
|
|

||

||

||

MPI_BXOR Bitwise XOR

MPI_LAND Logical AND

MPI_LOR Logical OR

MPI_LXOR Logical XOR

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_PROD Product

MPI_SUM Sum

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

recvbuf

The starting address of the receive buffer (choice) (OUT)

recvcounts

An integer array specifying the number of elements in result distributed to each

task. Must be identical on all calling tasks. (IN)

datatype

The data type of elements in the input buffer (handle) (IN)

op The reduction operation (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See IBM Parallel Environment: MPI Programming Guide.

The MPI standard urges MPI implementations to use the same evaluation order for

reductions every time, even if this negatively affects performance. PE MPI adjusts

its reduce algorithms for the optimal performance on a given task distribution. The

MPI standard suggests, but does not mandate, this sacrifice of performance. PE

MPI maintains a balance between performance and the MPI standard's

recommendation. PE MPI does not promise that any two runs with the same tack

count will give the same answer, in the least significant bits, for floating point

reductions. Changes to evaluation order may produce different rounding effects.

However, PE MPI does promise that two calls to MPI_REDUCE (or

MPI_ALLREDUCE) on the same communicator with the same inputs, or two runs

that use the same task count and the same distribution across nodes, will always

give identical results.

MPI_REDUCE_SCATTER

410 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

||

||

||

||

||

||

||

||

||

||

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid recvcounts

recvcounts[i] < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Related information

 MPE_IREDUCE_SCATTER

 MPI_OP_CREATE

 MPI_REDUCE

MPI_REDUCE_SCATTER

Chapter 3. MPI subroutines and functions 411

MPI_REGISTER_DATAREP, MPI_Register_datarep

Purpose

Registers a data representation.

C synopsis

#include <mpi.h>

int MPI_Register_datarep(char *datarep,

 MPI_Datarep_conversion_function *read_conversion_fn,

 MPI_Datarep_conversion_function *write_conversion_fn,

 MPI_Datarep_extent_function *dtype_file_extent_fn,

 void *extra_state);

C++ synopsis

#include mpi.h

void MPI::Register_datarep(const char* datarep,

 MPI::Datarep_conversion_function* read_conversion_fn,

 MPI::Datarep_conversion_function* write_conversion_fn,

 MPI::Datarep_extent_function* dtype_file_extent_fn,

 void* extra_state);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_REGISTER_DATAREP(CHARACTER*(*) DATAREP, EXTERNAL READ_CONVERSION_FN,

 EXTERNAL WRITE_CONVERSION_FN, EXTERNAL DTYPE_FILE_EXTENT_FN,

 INTEGER(KIND=MPI_ADDRESS_KIND), INTEGER EXTRA_STATE,

 INTEGER IERROR)

Description

This subroutine associates read_conversion_fn, write_conversion_fn, and

dtype_file_extent_fn with the data representation identifier datarep. datarep can

then be used as an argument to MPI_FILE_SET_VIEW, causing subsequent data

access operations to call the conversion functions to convert all data items

accessed between file data representation and native representation.

MPI_REGISTER_DATAREP is a local operation and registers only the data

representation for the calling MPI task. If datarep is already defined, an error in the

MPI_ERR_DUP_DATAREP error class is raised using the default file error handler.

The length of a data representation string is limited to the value of

MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value

of at least 64. No routines are provided to delete data representations and free the

associated resources; it is not expected that an application will generate them in

significant numbers.

The function dtype_file_extent_fn must return, in file_extent, the number of bytes

required to store datatype in the file representation. The function is passed, in

extra_state, the argument that was passed to MPI_REGISTER_DATAREP. MPI will

call this subroutine only with predefined data types employed by the user.

Parameters

datarep

The data representation identifier (string) (IN)

read_conversion_fn

The function invoked to convert from file representation to native representation

(function) (IN)

MPI_REGISTER_DATAREP

412 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

write_conversion_fn

The function invoked to convert from native representation to file representation

(function) (IN)

dtype_file_extent_fn

The function invoked to get the extent of a data type in the file representation

(function) (IN)

extra_state

The extra state (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Before specifying your own data representation when setting a view for an opened

file, you must first register your data representation using

MPI_REGISTER_DATAREP.

PE MPI supports the three predefined data representations: external32, internal,

and native.

The C, C++, and FORTRAN versions of the function prototypes follow:

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

 MPI_Aint *file_extent,

 void *extra_state);

typedef MPI::Datarep_extent_function(const MPI::Datatype& datatype,

 MPI::Aint& file_extent,

 void* extra_state);

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

typedef int MPI_Datarep_conversion_function(void *userbuf,

 MPI_Datatype datatype,

 int count, void *filebuf,

 MPI_Offset position,

 void *extra_state);

typedef MPI::Datarep_conversion_function(void* userbuf,

 MPI::Datatype& datatype,

 int count, void* filebuf,

 MPI::Offset position,

 void* extra_state);

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

 POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Data representation already defined

Data representation identifier too long

MPI_REGISTER_DATAREP

Chapter 3. MPI subroutines and functions 413

Related information

 MPI_FILE_GET_TYPE_EXTENT

 MPI_FILE_GET_VIEW

 MPI_FILE_SET_VIEW

MPI_REGISTER_DATAREP

414 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Request_c2f

Purpose

Translates a C request handle into a FORTRAN handle to the same request.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Request_c2f(MPI_Request request);

Description

This function does not have C++ or FORTRAN bindings. MPI_Request_c2f

translates a C request handle into a FORTRAN handle to the same request; it

maps a null handle into a null handle and a non-valid handle into a non-valid

handle. The converted handle is returned as the function’s value. There is no error

detection or return code.

Parameters

request

The request (handle) (IN)

Errors

None.

Related information

 MPI_Request_f2c

MPI_Request_c2f

Chapter 3. MPI subroutines and functions 415

MPI_Request_f2c

Purpose

Returns a C handle to a request.

C synopsis

#include <mpi.h>

MPI_Request MPI_Request_f2c(MPI_Fint request);

Description

This function does not have C++ or FORTRAN bindings. MPI_Request_f2c returns

a C handle to a request. If request is a valid FORTRAN handle to a request,

MPI_Request_f2c returns a valid C handle to that same request. If request is set to

the FORTRAN value MPI_REQUEST_NULL, MPI_Request_f2c returns the

equivalent null C handle. If request is not a valid FORTRAN handle,

MPI_Request_f2c returns a non-valid C handle. The converted handle is returned

as the function’s value. There is no error detection or return code.

Parameters

request

The request (handle) (IN)

Errors

None.

Related information

 MPI_Request_c2f

MPI_Request_f2c

416 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_REQUEST_FREE, MPI_Request_free

Purpose

Marks a request for deallocation.

C synopsis

#include <mpi.h>

int MPI_Request_free(int MPI_Request *request);

C++ synopsis

#include mpi.h

void MPI::Request::Free();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_REQUEST_FREE(INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine marks a request object for deallocation and sets request to

MPI_REQUEST_NULL. An ongoing communication associated with the request is

allowed to complete before deallocation occurs.

Parameters

request

A communication request (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

This function marks a communication request as free. Actual deallocation occurs

when the request is complete. Active receive requests and collective

communication requests cannot be freed.

Errors

Invalid request

Attempt to free receive request

Attempt to free CCL request

A Grequest free function returned an error

MPI not initialized

MPI already finalized

 Related information

 MPI_WAIT

MPI_REQUEST_FREE

Chapter 3. MPI subroutines and functions 417

MPI_REQUEST_GET_STATUS, MPI_Request_get_status

Purpose

Accesses the information associated with a request, without freeing the request.

C synopsis

#include <mpi.h>

int MPI_Request_get_status(MPI_Request request, int *flag, MPI_Status *status);

C++ synopsis

#include mpi.h

bool MPI::Request::Get_status() const;

#include mpi.h

bool MPI::Request::Get_status(MPI::Status&status) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_REQUEST_GET_STATUS(INTEGER REQUEST, LOGICAL FLAG,

 INTEGER STATUS, INTEGER IERROR)

Description

This subroutine accesses the information associated with a request, without freeing

the request (in case the user is expected to access it later). It lets you layer libraries

more conveniently, because multiple layers of software can access the same

completed request and extract from it the status information.

MPI_REQUEST_GET_STATUS sets flag = true if the operation would complete by

MPI_TEST, and, if so, returns in status the request status. However, unlike test or

wait, it does not deallocate or inactivate the request; a subsequent call to

MPI_FREE, MPI_TEST, or MPI_WAIT must still be called on the request to

complete it properly. It sets flag = false if the operation is not complete.

If MPI_REQUEST_GET_STATUS is called with an MPI_REQUEST_NULL or with

an inactive request, it will return flag = true and an empty status.

Parameters

request

The request (handle) (IN)

flag

A boolean flag, same as from MPI_TEST (logical) (OUT)

status

An MPI_STATUS object, if flag is true (Status) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

It is valid to call this subroutine with MPI_STATUS_IGNORE if only the flag value is

needed.

MPI_REQUEST_GET_STATUS

418 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Errors

Invalid status ignore value

GRequest query function returned an error

 Fatal errors:

Invalid request

MPI already finalized

 Related information

 MPI_TEST

MPI_REQUEST_GET_STATUS

Chapter 3. MPI subroutines and functions 419

MPI_RSEND, MPI_Rsend

Purpose

Performs a blocking ready mode send operation.

C synopsis

#include <mpi.h>

int MPI_Rsend(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Rsend(const void* buf, int count, const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_RSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER IERROR)

Description

This subroutine is a blocking ready mode send operation. It can be started only

when a matching receive is posted. If a matching receive is not posted, the

operation is erroneous and its outcome is undefined.

The completion of MPI_RSEND indicates that the send buffer can be reused.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of destination (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

A ready send for which no receive exists produces a fatal asynchronous error. The

error is not detected at the MPI_RSEND and it returns MPI_SUCCESS.

MPI_RSEND

420 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

No receive posted

error flagged at destination

MPI not initialized

MPI already finalized

Related information

 MPI_IRSEND

 MPI_SEND

MPI_RSEND

Chapter 3. MPI subroutines and functions 421

MPI_RSEND_INIT, MPI_Rsend_init

Purpose

Creates a persistent ready mode send request.

C synopsis

#include <mpi.h>

int MPI_Rsend_init(void* buf,int count,MPI_Datatype datatype,int dest,

 int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Prequest MPI::Comm::Rsend_init(const void* buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_RSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

MPI_RSEND_INIT creates a persistent communication object for a ready mode

send operation. MPI_START or MPI_STARTALL is used to activate the send.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements to be sent (integer) (IN)

datatype

The type of each element (handle) (IN)

dest

The rank of the destination task (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See “MPI_RSEND, MPI_Rsend” on page 420 for more information.

MPI_RSEND_INIT

422 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_IRSEND

 MPI_START

MPI_RSEND_INIT

Chapter 3. MPI subroutines and functions 423

MPI_SCAN, MPI_Scan

Purpose

Performs a parallel prefix reduction operation on data distributed across a group.

C synopsis

#include <mpi.h>

int MPI_Scan(void* sendbuf,void* recvbuf,int count,

 MPI_Datatype datatype,MPI_Op op,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Intracomm::Scan(const void *sendbuf, void *recvbuf, int count,

 const MPI::Datatype& datatype, const MPI::Op& op) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SCAN(CHOICE SENDBUF,CHOICE RECVBUF,INTEGER COUNT,INTEGER DATATYPE,

 INTEGER OP,INTEGER COMM,INTEGER IERROR)

Description

Use this subroutine to perform a prefix reduction operation on data distributed

across a group. The operation returns, in the receive buffer of the task with rank i,

the reduction of the values in the send buffers of tasks with ranks 0 to i inclusive.

The type of operations supported, their semantics, and the restrictions on send and

receive buffers are the same as for MPI_REDUCE.

The ″in place″ option for intra-communicators is specified by passing

MPI_IN_PLACE in the sendbuf argument. In this case, the input data is taken from

the receive buffer, and replaced by the output data.

MPI_SCAN is not supported for inter-communicators.

The parameter op may be a predefined reduction operation or a user-defined

function, created using MPI_OP_CREATE. This is a list of predefined reduction

operations:

Operation Definition

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_BXOR Bitwise XOR

MPI_LAND Logical AND

MPI_LOR Logical OR

MPI_LXOR Logical XOR

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_PROD Product

MPI_SCAN

424 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

||

||

||

||

||

||

||

||

||

||

||

||

MPI_SUM Sum

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The starting address of the send buffer (choice) (IN)

recvbuf

The starting address of the receive buffer (choice) (OUT)

count

The number of elements in sendbuf (integer) (IN)

datatype

The data type of elements in sendbuf (handle) (IN)

op The reduction operation (handle) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid op

Invalid communicator

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent op

Inconsistent datatype

Inconsistent message length

Related information

 MPI_EXSCAN

 MPE_ISCAN

 MPI_OP_CREATE

 MPI_REDUCE

MPI_SCAN

Chapter 3. MPI subroutines and functions 425

||

|

MPI_SCATTER, MPI_Scatter

Purpose

Distributes individual messages from root to each task in comm.

C synopsis

#include <mpi.h>

int MPI_Scatter(void* sendbuf,int sendcount,MPI_Datatype sendtype,void* recvbuf,

 int recvcount,MPI_Datatype recvtype,int root,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Scatter(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype,

 void* recvbuf, int recvcount,

 const MPI::Datatype& recvtype, int root) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SCATTER(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,CHOICE RECVBUF,

 INTEGER RECVCOUNT,INTEGER RECVTYPE,INTEGER ROOT,INTEGER COMM,

 INTEGER IERROR)

Description

MPI_SCATTER distributes individual messages from root to each task in comm.

This subroutine is the inverse operation to MPI_GATHER.

The type signature associated with sendcount, sendtype at the root must be equal

to the type signature associated with recvcount, recvtype at all tasks. (Type maps

can be different.) This means the amount of data sent must be equal to the amount

of data received, pair-wise between each task and the root. Distinct type maps

between sender and receiver are allowed.

The following is information regarding MPI_SCATTER arguments and tasks:

v On the task root, all arguments to the function are significant.

v On other tasks, only the arguments recvbuf, recvcount, recvtype, root, and comm

are significant.

v The argument root must be the same on all tasks.

A call where the specification of counts and types causes any location on the root

to be read more than once is erroneous.

The ″in place″ option for intra-communicators is specified by passing

MPI_IN_PLACE as the value of recvbuf at the root. In such a case, recvcount and

recvtype are ignored, and root ″sends″ no data to itself. The scattered vector is still

assumed to contain n segments, where n is the group size. The rootth segment,

which root should ″send to itself,″ is not moved.

If comm is an inter-communicator, the call involves all tasks in the

inter-communicator, but with one group (group A) defining the root task. All tasks in

the other group (group B) pass the same value in root, which is the rank of the root

in group A. The root passes the value MPI_ROOT in root. All other tasks in group A

pass the value MPI_PROC_NULL in root. Data is scattered from the root to all

MPI_SCATTER

426 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

tasks in group B. The receive buffer arguments of the tasks in group B must be

consistent with the send buffer argument of the root.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The address of the send buffer (choice, significant only at root) (IN)

sendcount

The number of elements to be sent to each task (integer, significant only at

root) (IN)

sendtype

The data type of the send buffer elements (handle, significant only at root) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements in the receive buffer (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

root

The rank of the sending task (integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid communicator

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid root

 For an intra-communicator: root < 0 or root >= groupsize

MPI_SCATTER

Chapter 3. MPI subroutines and functions 427

For an inter-communicator: root < 0 and is neither MPI_ROOT nor

MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Inconsistent message length

Related information

 MPE_ISCATTER

 MPI_GATHER

 MPI_SCATTER

MPI_SCATTER

428 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_SCATTERV, MPI_Scatterv

Purpose

Distributes individual messages from root to each task in comm. Messages can

have different sizes and displacements.

C synopsis

#include <mpi.h>

int MPI_Scatterv(void* sendbuf,int *sendcounts,int *displs,

 MPI_Datatype sendtype,void* recvbuf,int recvcount,

 MPI_Datatype recvtype,int root,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Scatterv(const void* sendbuf, const int sendcounts[],

 const int displs[], const MPI::Datatype& sendtype,

 void* recvbuf, int recvcount, const MPI::Datatype& recvtype,

 int root) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SCATTERV(CHOICE SENDBUF,INTEGER SENDCOUNTS(*),INTEGER DISPLS(*),

 INTEGER SENDTYPE,CHOICE RECVBUF,INTEGER RECVCOUNT,INTEGER RECVTYPE,

 INTEGER ROOT,INTEGER COMM,INTEGER IERROR)

Description

This subroutine distributes individual messages from root to each task in comm.

Messages can have different sizes and displacements.

With sendcounts as an array, messages can have varying sizes of data that can be

sent to each task. displs allows you the flexibility of where the data can be taken

from on the root.

The type signature of sendcount[i], sendtype at the root must be equal to the type

signature of recvcount, recvtype at task i. (The type maps can be different.) This

means the amount of data sent must be equal to the amount of data received,

pair-wise between each task and the root. Distinct type maps between sender and

receiver are allowed.

The following is information regarding MPI_SCATTERV arguments and tasks:

v On the task root, all arguments to the function are significant.

v On other tasks, only the arguments recvbuf, recvcount, recvtype, root, and comm

are significant.

v The argument root must be the same on all tasks.

A call where the specification of sizes, types, and displacements causes any

location on the root to be read more than once is erroneous.

The ″in place″ option for intra-communicators is specified by passing

MPI_IN_PLACE as the value of recvbuf at the root. In such a case, recvcount and

recvtype are ignored, and root ″sends″ no data to itself. The scattered vector is still

assumed to contain n segments, where n is the group size. The rootth segment,

which root should ″send to itself,″ is not moved.

MPI_SCATTERV

Chapter 3. MPI subroutines and functions 429

If comm is an inter-communicator, the call involves all tasks in the

inter-communicator, but with one group (group A) defining the root task. All tasks in

the other group (group B) pass the same value in root, which is the rank of the root

in group A. The root passes the value MPI_ROOT in root. All other tasks in group A

pass the value MPI_PROC_NULL in root. Data is scattered from the root to all

tasks in group B. The receive buffer arguments of the tasks in group B must be

consistent with the send buffer argument of the root.

MPI_IN_PLACE is not supported for inter-communicators.

When you use this subroutine in a threads application, make sure all collective

operations on a particular communicator occur in the same order at each task. See

IBM Parallel Environment: MPI Programming Guide for more information on

programming with MPI in a threads environment.

Parameters

sendbuf

The address of the send buffer (choice, significant only at root) (IN)

sendcounts

An integer array (of length groupsize) that contains the number of elements to

send to each task (significant only at root) (IN)

displs

An integer array (of length groupsize). Entry i specifies the displacement relative

to sendbuf from which to send the outgoing data to task i (significant only at

root) (IN)

sendtype

The data type of the send buffer elements (handle, significant only at root) (IN)

recvbuf

The address of the receive buffer (choice) (OUT)

recvcount

The number of elements in the receive buffer (integer) (IN)

recvtype

The data type of the receive buffer elements (handle) (IN)

root

The rank of the sending task (integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In the 64-bit library, this function uses a shared memory optimization among the

tasks on a node. This optimization is discussed in the chapter Using shared

memory of IBM Parallel Environment: MPI Programming Guide, and is enabled by

default. This optimization is not available to 32-bit programs.

Errors

Fatal errors:

Invalid communicator

MPI_SCATTERV

430 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid root

 For an intra-communicator: root < 0 or root >= groupsize

 For an inter-communicator: root < 0 and is neither MPI_ROOT nor

MPI_PROC_NULL, or root >= groupsize of the remote group

Unequal message lengths

Invalid use of MPI_IN_PLACE

MPI not initialized

MPI already finalized

Develop mode error if:

Inconsistent root

Related information

 MPI_GATHER

 MPI_SCATTER

MPI_SCATTERV

Chapter 3. MPI subroutines and functions 431

MPI_SEND, MPI_Send

Purpose

Performs a blocking standard mode send operation.

C synopsis

#include <mpi.h>

int MPI_Send(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Send(const void* buf, int count, const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER IERROR)

Description

This subroutine is a blocking standard mode send operation. MPI_SEND causes

count elements of type datatype to be sent from buf to the task specified by dest.

dest is a task rank that can be any value from 0 to (n–1), where n is the number of

tasks in comm.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (non-negative integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of the destination task in comm(integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

MPI_SEND

432 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_BSEND

 MPI_ISEND

 MPI_RSEND

 MPI_SENDRECV

 MPI_SSEND

MPI_SEND

Chapter 3. MPI subroutines and functions 433

MPI_SEND_INIT, MPI_Send_init

Purpose

Creates a persistent standard mode send request.

C synopsis

#include <mpi.h>

int MPI_Send_init(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Prequest MPI::Comm::Send_init(const void* buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine creates a persistent communication request for a standard mode

send operation, and binds to it all arguments of a send operation. A communication

started with MPI_SEND_INIT is completed by a call to one of the MPI wait or test

operations. MPI_START or MPI_STARTALL is used to activate the send.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements to be sent (integer) (IN)

datatype

The type of each element (handle) (IN)

dest

The rank of the destination task (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See “MPI_SEND, MPI_Send” on page 432 for more information.

MPI_SEND_INIT

434 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_ISEND

 MPI_START

MPI_SEND_INIT

Chapter 3. MPI subroutines and functions 435

MPI_SENDRECV, MPI_Sendrecv

Purpose

Performs a blocking send and receive operation.

C synopsis

#include <mpi.h>

int MPI_Sendrecv(void *sendbuf,int sendcount,MPI_Datatype sendtype,

 int dest,int sendtag,void *recvbuf,int recvcount,

 MPI_Datatype recvtype,int source,int recvtag,

 MPI_Comm comm,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::Comm::Sendrecv(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype, int dest,

 int sendtag, void* recvbuf, int recvcount,

 const MPI::Datatype& recvtype, int source,

 int recvtag) const;

#include mpi.h

void MPI::Comm::Sendrecv(const void* sendbuf, int sendcount,

 const MPI::Datatype& sendtype, int dest,

 int sendtag, void* recvbuf, int recvcount,

 const MPI::Datatype& recvtype, int source,

 int recvtag, MPI::Status& status)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SENDRECV(CHOICE SENDBUF,INTEGER SENDCOUNT,INTEGER SENDTYPE,

 INTEGER DEST,INTEGER SENDTAG,CHOICE RECVBUF,INTEGER RECVCOUNT,

 INTEGER RECVTYPE,INTEGER SOURCE,INTEGER RECVTAG,INTEGER COMM,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is a blocking send and receive operation. Send and receive use the

same communicator but can use different tags. The send and the receive buffers

must be disjoint and can have different lengths and data types.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Parameters

sendbuf

The initial address of the send buffer (choice) (IN)

sendcount

The number of elements to be sent (integer) (IN)

sendtype

The type of elements in the send buffer (handle) (IN)

dest

The rank of the destination task (integer) (IN)

MPI_SENDRECV

436 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

sendtag

The send tag (integer) (IN)

recvbuf

The initial address of the receive buffer (choice) (OUT)

recvcount

The number of elements to be received (integer) (IN)

recvtype

The type of elements in the receive buffer (handle) (IN)

source

The rank of the source task or MPI_ANY_SOURCE (integer) (IN)

recvtag

The receive tag or MPI_ANY_TAG (integer) (IN)

comm

The communicator (handle) (IN)

status

The status object (Status) (INOUT). Note that in FORTRAN a single status

object is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid counts

count < 0

Invalid datatypes

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid source

source < 0 or source > = groupsize

Invalid communicator

Invalid tags

tag < 0

Invalid status ignore value

MPI not initialized

MPI already finalized

Related information

 MPI_RECV

 MPI_SEND

 MPI_SENDRECV_REPLACE

MPI_SENDRECV

Chapter 3. MPI subroutines and functions 437

MPI_SENDRECV_REPLACE, MPI_Sendrecv_replace

Purpose

Performs a blocking send and receive operation using a common buffer.

C synopsis

#include <mpi.h>

int MPI_Sendrecv_replace(void* buf,int count,MPI_Datatype datatype,

 int dest,int sendtag,int source,int recvtag,

 MPI_Comm comm,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::Comm::Sendrecv_replace(void* buf, int count,

 const MPI::Datatype& datatype,

 int dest, int sendtag, int source,

 int recvtag) const;

#include mpi.h

void MPI::Comm::Sendrecv_replace(void *buf, int count,

 const MPI::Datatype& datatype,

 int dest, int sendtag, int source,

 int recvtag, MPI::Status& status)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SENDRECV_REPLACE(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER SENDTAG,INTEGER SOURCE,INTEGER RECVTAG,INTEGER COMM,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine is a blocking send and receive operation using a common buffer.

Send and receive use the same buffer so the message sent is replaced with the

message received.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

Parameters

buf

The initial address of the send and receive buffer (choice) (INOUT)

count

The number of elements to be sent and received (integer) (IN)

datatype

The type of elements in the send and receive buffer (handle) (IN)

dest

The rank of the destination task (integer) (IN)

sendtag

The send message tag (integer) (IN)

source

The rank of the source task or MPI_ANY_SOURCE (integer) (IN)

MPI_SENDRECV_REPLACE

438 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

recvtag

The receive message tag or MPI_ANY_TAGE (integer) (IN)

comm

The communicator (handle) (IN)

status

The status object (Status) (INOUT). Note that in FORTRAN a single status

object is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid source

source < 0 or source > = groupsize

Invalid communicator

Invalid tags

tag < 0

Invalid status ignore value

Out of memory

MPI not initialized

MPI already finalized

Related information

 MPI_SENDRECV

MPI_SENDRECV_REPLACE

Chapter 3. MPI subroutines and functions 439

MPI_SIZEOF

Purpose

Returns the size in bytes of the machine representation of the given variable.

FORTRAN synopsis

use mpi

MPI_SIZEOF(CHOICE X, INTEGER SIZE, INTEGER IERROR)

Description

This subroutine returns the size in bytes of the machine representation of the given

variable. It is a generic FORTRAN routine and has only a FORTRAN binding . It

requires information provided by the MPI module and will produce a runtime error if

the program was coded with include ’mpif.h’. MPI_SIZEOF is most useful when

variables are declared with KIND=SELECTED_xxx_KIND because the number of

bytes for a variable may vary from one architecture to another.

Parameters

X A FORTRAN variable of numeric intrinsic type (choice) (IN)

SIZE

The size of the machine representation of that type (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_SIZEOF is similar to the C and C++ sizeof operator, but behaves slightly

differently. If MPI_SIZEOF is given an array argument, it returns the size of the

base element, not the size of the whole array.

Errors

Fatal errors:

MPI already finalized

MPI not initialized

No ″USE MPI″ statement in compilation unit

MPI_SIZEOF

440 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_SSEND, MPI_Ssend

Purpose

Performs a blocking synchronous mode send operation.

C synopsis

#include <mpi.h>

int MPI_Ssend(void* buf,int count,MPI_Datatype datatype,

 int dest,int tag,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Comm::Ssend(const void* buf, int count, const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SSEND(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER IERROR)

Description

This subroutine is a blocking synchronous mode send operation. This is a nonlocal

operation. It can be started whether or not a matching receive was posted.

However, the send will complete only when a matching receive is posted and the

receive operation has started to receive the message sent by MPI_SSEND.

The completion of MPI_SSEND indicates that the send buffer is freed and also that

the receiver has started processing the matching receive. If both sends and

receives are blocking operations, the synchronous mode provides synchronous

communication.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements in the send buffer (integer) (IN)

datatype

The data type of each send buffer element (handle) (IN)

dest

The rank of the destination task (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_SSEND

Chapter 3. MPI subroutines and functions 441

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_ISSEND

 MPI_SEND

MPI_SSEND

442 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_SSEND_INIT, MPI_Ssend_init

Purpose

Creates a persistent synchronous mode send request.

C synopsis

#include <mpi.h>

int MPI_Ssend_init(void* buf,int count,MPI_Datatype datatype,int dest,

 int tag,MPI_Comm comm,MPI_Request *request);

C++ synopsis

#include mpi.h

MPI::Prequest MPI::Comm::Ssend_init(const void* buf, int count,

 const MPI::Datatype& datatype,

 int dest, int tag) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_SSEND_INIT(CHOICE BUF,INTEGER COUNT,INTEGER DATATYPE,INTEGER DEST,

 INTEGER TAG,INTEGER COMM,INTEGER REQUEST,INTEGER IERROR)

Description

This subroutine creates a persistent communication object for a synchronous mode

send operation. MPI_START or MPI_STARTALL can be used to activate the send.

Parameters

buf

The initial address of the send buffer (choice) (IN)

count

The number of elements to be sent (integer) (IN)

datatype

The type of each element (handle) (IN)

dest

The rank of the destination task (integer) (IN)

tag

The message tag (positive integer) (IN)

comm

The communicator (handle) (IN)

request

The communication request (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

See “MPI_SSEND, MPI_Ssend” on page 441 for more information.

MPI_SSEND_INIT

Chapter 3. MPI subroutines and functions 443

Errors

Invalid count

count < 0

Invalid datatype

Type not committed

Invalid destination

dest < 0 or dest > = groupsize

Invalid tag

tag < 0

Invalid comm

MPI not initialized

MPI already finalized

Related information

 MPI_ISSEND

 MPI_START

MPI_SSEND_INIT

444 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_START, MPI_Start

Purpose

Activates a persistent request operation.

C synopsis

#include <mpi.h>

int MPI_Start(MPI_Request *request);

C++ synopsis

#include mpi.h

void MPI::Prequest::Start();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_START(INTEGER REQUEST,INTEGER IERROR)

Description

MPI_START activates a persistent request operation. A communication started with

MPI_START is completed by a call to one of the MPI wait or test operations.

request is a handle returned by MPI_RECV_INIT, MPI_RSEND_INIT,

MPI_SSEND_INIT, MPI_BSEND_INIT or MPI_SEND_INIT. Once the call is made,

do not access the communication buffer until the operation completes.

If the request is for a send with ready mode, then a matching receive must be

posted before the call is made. If the request is for a buffered send, adequate buffer

space must be available.

Parameters

request

A communication request (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid request

Request not persistent

Request already active

Insufficient buffer space

Only if buffered send

MPI not initialized

MPI already finalized

Related information

 MPI_BSEND_INIT

 MPI_RECV_INIT

 MPI_RSEND_INIT

 MPI_SEND_INIT

MPI_START

Chapter 3. MPI subroutines and functions 445

MPI_SSEND_INIT

 MPI_STARTALL

MPI_START

446 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_STARTALL, MPI_Startall

Purpose

Activates a collection of persistent request operations.

C synopsis

#include <mpi.h>

int MPI_Startall(int count,MPI_request *array_of_requests);

C++ synopsis

#include mpi.h

void MPI::Prequest::Startall(int count, MPI::Prequest array_of_requests[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_STARTALL(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(*),INTEGER IERROR)

Description

MPI_STARTALL starts all communication associated with request operations in

array_of_requests. A communication started with MPI_STARTALL is completed by a

call to one of the MPI wait or test operations. The request becomes inactive after

successful completion but is not deallocated and can be reactivated by an

MPI_STARTALL. If a request is for a send with ready mode, a matching receive

must be posted before the call. If a request is for a buffered send, adequate buffer

space must be available.

Parameters

count

The list length (integer) (IN)

array_of_requests

The array of requests (array of handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid count

Invalid request array

Request invalid

Request not persistent

Request active

Insufficient buffer space

Only if a buffered send

MPI not initialized

MPI already finalized

Related information

 MPI_START

MPI_STARTALL

Chapter 3. MPI subroutines and functions 447

MPI_Status_c2f

Purpose

Translates a C status object into a FORTRAN status object.

C synopsis

#include <mpi.h>

int MPI_Status_c2f(MPI_Status *c_status, MPI_Fint *f_status);

Description

This function converts a C status object (which is a user-declared structure object)

to a FORTRAN status object (which is a user-declared array of integers). The

conversion occurs on all the information in status, including that which is hidden.

That is, no status information is lost in the conversion.

The value of c_status must not be either MPI_STATUS_IGNORE or

MPI_STATUSES_IGNORE. Code that calls MPI_Status_c2f is responsible for

checking that neither ignore value is used.

There is not a separate conversion function for arrays of statuses, because you can

simply loop through the array, converting each status.

Parameters

c_status

The C status object (IN)

f_status

The FORTRAN status object (OUT)

Errors

No errors are detected.

Related information

 MPI_Status_f2c

MPI_Status_c2f

448 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Status_f2c

Purpose

Converts a FORTRAN status object into a C status object.

C synopsis

#include <mpi.h>

int MPI_Status_f2c(MPI_Fint *f_status, MPI_Status *c_status);

Description

This function converts a FORTRAN status object (which is a user-declared array of

integers) to a C status object (which is a user-declared structure object). The

conversion occurs on all the information in status, including that which is hidden.

That is, no status information is lost in the conversion.

If f_status is a valid FORTRAN status, but not the FORTRAN value of

MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE, MPI_Status_f2c returns in

c_status a valid C status with the same content. If f_status is the FORTRAN value

of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE, or if f_status is not a valid

FORTRAN status, the call is erroneous.

The predeclared global variables MPI_F_STATUS_IGNORE and

MPI_F_STATUSES_IGNORE can be used to test whether f_status is one of the

ignore values.

The C status has the same source, tag and error code values as the FORTRAN

status, and returns the same answers when queried for count, elements, and

cancellation. The conversion function can be called with a FORTRAN status

argument that has an undefined error field, in which case the value of the error field

in the C status argument is undefined.

There is not a separate conversion function for arrays of statuses, because you can

simply loop through the array, converting each status.

Parameters

f_status

The FORTRAN status object (IN)

c_status

The C status object (OUT)

Errors

No errors are detected.

Related information

 MPI_Status_c2f

MPI_Status_f2c

Chapter 3. MPI subroutines and functions 449

MPI_STATUS_SET_CANCELLED, MPI_Status_set_cancelled

Purpose

Defines cancellation information for a request.

C synopsis

#include <mpi.h>

int MPI_Status_set_cancelled(MPI_Status *status, int flag);

C++ synopsis

#include mpi.h

void MPI::Status::Set_cancelled(bool flag);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_STATUS_SET_CANCELLED(INTEGER STATUS(MPI_STATUS_SIZE),

 LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine defines cancellation information for a generalized request and

places it in a status object. If flag is set to true, a subsequent call to

MPI_TEST_CANCELLED will also return flag = true; otherwise it will return false.

Users are advised not to reuse the status fields for values other than those for

which they were intended. Doing so may lead to unexpected results when using the

status object. For example, calling MPI_GET_ELEMENTS may cause an error if the

value is out of range or it may be impossible to detect such an error. The

extra_state argument provided with a generalized request can be used to return

information that does not logically belong in status. Furthermore, modifying the

values in a status set internally by MPI (that is, MPI_RECV), may lead to

unpredictable results and is strongly discouraged.

Parameters

status

The status object to associate the cancel flag with (Status) (INOUT)

flag

The flag (Status) (logical) (IN). true indicates that the request was cancelled.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_STATUS_SET_ELEMENTS

MPI_STATUS_SET_CANCELLED

450 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_STATUS_SET_ELEMENTS, MPI_Status_set_elements

Purpose

Defines element information for a request.

C synopsis

#include <mpi.h>

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype, int count);

C++ synopsis

#include mpi.h

void MPI::Status::Set_elements(const MPI::Datatype& datatype, int count);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_STATUS_SET_ELEMENTS(INTEGER STATUS(MPI_STATUS_SIZE), INTEGER DATATYPE,

 INTEGER COUNT, INTEGER IERROR)

Description

This subroutine defines element information for a generalized request and places it

in a status object.

Users are advised not to reuse the status fields for values other than those for

which they were intended. Doing so may lead to unexpected results when using the

status object. For example, calling MPI_GET_ELEMENTS may cause an error if the

value is out of range or it may be impossible to detect such an error. The

extra_state argument provided with a generalized request can be used to return

information that does not logically belong in status. Furthermore, modifying the

values in a status set internally by MPI (that is, MPI_RECV), may lead to

unpredictable results and is strongly discouraged.

Parameters

status

The status object to associate count with (Status) (INOUT)

datatype

The data type associated with count (handle) (IN)

count

The number of elements to associate with status (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_STATUS_SET_CANCELLED

MPI_STATUS_SET_ELEMENTS

Chapter 3. MPI subroutines and functions 451

MPI_TEST, MPI_Test

Purpose

Checks to see if a nonblocking request has completed.

C synopsis

#include <mpi.h>

int MPI_Test(MPI_Request *request,int *flag,MPI_Status *status);

C++ synopsis

#include mpi.h

bool MPI::Request::Test();

#include mpi.h

bool MPI::Request::Test(MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TEST(INTEGER REQUEST,INTEGER FLAG,INTEGER STATUS(MPI_STATUS_SIZE),

 INTEGER IERROR)

Description

MPI_TEST returns flag = true if the operation identified by request is complete. The

status object is set to contain information on the completed operation. The request

object is deallocated and the request handle is set to MPI_REQUEST_NULL.

Otherwise, flag = false and the status object is undefined. MPI_TEST is a local

operation. The status object can be queried for information about the operation.

(See “MPI_WAIT, MPI_Wait” on page 537.)

You can call MPI_TEST with a null or inactive request argument. The operation

returns flag = true and empty status.

The error field of MPI_Status is never modified. The success or failure is indicated

only by the return code.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

When you use this subroutine in a threads application, make sure the request is

tested on only one thread. The request does not have to be tested on the thread

that created the request. See IBM Parallel Environment: MPI Programming Guide

for more information on programming with MPI in a threads environment.

Parameters

request

The operation request (handle) (INOUT)

MPI_TEST

452 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

flag

Set to true if the operation completed (logical) (OUT)

status

The status object (Status) (INOUT). Note that in FORTRAN a single status

object is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

Invalid request handle

Truncation occurred

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update (ISEND)

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TESTALL

 MPI_TESTANY

 MPI_TESTSOME

 MPI_WAIT

MPI_TEST

Chapter 3. MPI subroutines and functions 453

MPI_TEST_CANCELLED, MPI_Test_cancelled

Purpose

Tests whether a nonblocking operation was cancelled.

C synopsis

#include <mpi.h>

int MPI_Test_cancelled(MPI_Status * status,int *flag);

C++ synopsis

#include mpi.h

bool MPI::Status::Is_cancelled() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TEST_CANCELLED(INTEGER STATUS(MPI_STATUS_SIZE),INTEGER FLAG,

 INTEGER IERROR)

Description

MPI_TEST_CANCELLED returns flag = true if the communication associated with

the status object was cancelled successfully. In this case, all other fields of status

(such as count or tag) are undefined. Otherwise, flag = false is returned. If a

receive operation might be cancelled, you should call MPI_TEST_CANCELLED first

to check if the operation was cancelled, before checking on the other fields of the

return status.

Parameters

status

A status object (Status) (IN). Note that in FORTRAN a single status object is an

array of integers.

flag

Set to true if the operation was cancelled (logical) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Nonblocking I/O operations are never cancelled successfully.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_CANCEL

MPI_TEST_CANCELLED

454 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TESTALL, MPI_Testall

Purpose

Tests a collection of nonblocking operations for completion.

C synopsis

#include <mpi.h>

int MPI_Testall(int count,MPI_Request *array_of_requests,

 int *flag,MPI_Status *array_of_statuses);

C++ synopsis

#include mpi.h

bool MPI::Request::Testall(int count, MPI::Request req_array[]);

#include mpi.h

bool MPI::Request::Testall(int count, MPI::Request req_array[],

 MPI::Status stat_array[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TESTALL(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(*),INTEGER FLAG,

 INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),INTEGER IERROR)

Description

This subroutine tests a collection of nonblocking operations for completion. flag =

true is returned if all operations associated with active handles in the array

completed, or when no handle in the list is active.

Each status entry of an active handle request is set to the status of the

corresponding operation. A request allocated by a nonblocking operation call is

deallocated and the handle is set to MPI_REQUEST_NULL.

Each status entry of a null or inactive handle is set to empty. If one or more

requests have not completed, flag = false is returned. No request is modified and

the values of the status entries are undefined.

The error fields are never modified unless the function gives a return code of

MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is

modified to reflect the result of the corresponding request.

Passing MPI_STATUSES_IGNORE for the array_of_statuses argument causes PE

MPI to skip filling in the status fields. By passing this value for array_of_statuses,

you can avoid having to allocate a status object array in programs that do not need

to examine the status fields.

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

When you use this subroutine in a threads application, make sure the request is

tested on only one thread. The request does not have to be tested on the thread

that created it. See IBM Parallel Environment: MPI Programming Guide for more

information on programming with MPI in a threads environment.

MPI_TESTALL

Chapter 3. MPI subroutines and functions 455

Parameters

count

The number of requests to test (integer) (IN)

array_of_requests

An array of requests of length count (array of handles) (INOUT)

flag

(logical) (OUT)

array_of_statuses

An array of status of length count objects (array of status) (INOUT). Note that in

FORTRAN a status object is itself an array.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid count

count < 0

Invalid request array

Invalid requests

Truncation occurred

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update (ISEND)

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TEST

 MPI_WAITALL

MPI_TESTALL

456 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TESTANY, MPI_Testany

Purpose

Tests for the completion of any nonblocking operation.

C synopsis

#include <mpi.h>

int MPI_Testany(int count,MPI_Request *array_of_requests,int *index,

 int *flag,MPI_Status *status);

C++ synopsis

#include mpi.h

bool MPI::Request::Testany(int count, MPI::Request array[],

 int& index);

#include mpi.h

bool MPI::Request::Testany(int count, MPI::Request array[],

 int& index, MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TESTANY(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(*),INTEGER INDEX,INTEGER FLAG,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

If one of the operations has completed, MPI_TESTANY returns flag = true and

returns in index the index of this request in the array, and returns in status the

status of the operation. If the request was allocated by a nonblocking operation, the

request is deallocated and the handle is set to MPI_REQUEST_NULL.

If none of the operations has completed, it returns flag = false and returns a value

of MPI_UNDEFINED in index, and status is undefined. The array can contain null or

inactive handles. When the array contains no active handles, the call returns

immediately with flag = true, index = MPI_UNDEFINED, and empty status.

MPI_TESTANY(count, array_of_requests, index, flag, status) has the same effect as

the invocation of MPI_TEST(array_of_requests[i], flag, status), for i = 0, 1, ...,

count-1, in some arbitrary order, until one call returns flag = true, or all fail.

The error fields are never modified unless the function gives a return code of

MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is

modified to reflect the result of the corresponding request.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

When you use this subroutine in a threads application, make sure the request is

tested on only one thread. The request does not have to be tested on the thread

MPI_TESTANY

Chapter 3. MPI subroutines and functions 457

that created it. See IBM Parallel Environment: MPI Programming Guide for more

information on programming with MPI in a threads environment.

Parameters

count

The list length (integer) (IN)

array_of_requests

The array of request (array of handles) (INOUT)

index

The index of the operation that completed, or MPI_UNDEFINED is no operation

completed (OUT)

flag

Set to true if one of the operations is complete (logical) (OUT)

status

The status object (Status) (INOUT). Note that in FORTRAN a single status

object is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The array is indexed from zero (0) in C and from one (1) in FORTRAN.

The use of this routine makes the order in which your application completes the

requests nondeterministic. An application that processes messages in whatever

order they complete must not make assumptions about that order. For example, if:

((msgA op msgB) op msgC)

can give a different answer than:

((msgB op msgC) op msgA)

the application must be prepared to accept either answer as correct, and must not

assume a second run of the application will give the same answer.

Errors

Invalid count

count < 0

Invalid request array

Invalid requests

Truncation occurred

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

MPI not initialized

MPI already finalized

MPI_TESTANY

458 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

|

|

|

|
|

Develop mode error if:

Illegal buffer update (ISEND)

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TEST

 MPI_WAITANY

MPI_TESTANY

Chapter 3. MPI subroutines and functions 459

MPI_TESTSOME, MPI_Testsome

Purpose

Tests a collection of nonblocking operations for completion.

C synopsis

#include <mpi.h>

int MPI_Testsome(int incount,MPI_Request *array_of_requests,

 int *outcount,int *array_of_indices,

 MPI_Status *array_of_statuses);

C++ synopsis

#include mpi.h

int MPI::Request::Testsome(int incount, MPI::Request req_array[],

 int array_of_indices[]);

#include mpi.h

int MPI::Request::Testsome(int incount, MPI::Request req_array[],

 int array_of_indices[],

 MPI::Status stat_array[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TESTSOME(INTEGER INCOUNT,INTEGER ARRAY_OF_REQUESTS(*),

 INTEGER OUTCOUNT,INTEGER ARRAY_OF_INDICES(*),

 INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),INTEGER IERROR)

Description

This subroutine tests a collection of nonblocking operations for completion.

MPI_TESTSOME behaves like MPI_WAITSOME except that MPI_TESTSOME is a

local operation and returns immediately. outcount = 0 is returned when no

operation has completed.

When a request for a receive repeatedly appears in a list of requests passed to

MPI_TESTSOME and a matching send is posted, then the receive eventually

succeeds unless the send is satisfied by another receive. This fairness requirement

also applies to send requests and to I/O requests.

The error fields are never modified unless the function gives a return code of

MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is

modified to reflect the result of the corresponding request.

Passing MPI_STATUSES_IGNORE for the array_of_statuses argument causes PE

MPI to skip filling in the status fields. By passing this value for array_of_statuses,

you can avoid having to allocate a status object array in programs that do not need

to examine the status fields.

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

When you use this subroutine in a threads application, make sure the request is

tested on only one thread. The request does not have to be tested on the thread

MPI_TESTSOME

460 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

that created it. See IBM Parallel Environment: MPI Programming Guide for more

information on programming with MPI in a threads environment.

Parameters

incount

The length of array_of_requests (integer) (IN)

array_of_requests

The array of requests (array of handles) (INOUT)

outcount

The number of completed requests (integer) (OUT)

array_of_indices

The array of indices of operations that completed (array of integers) (OUT)

array_of_statuses

The array of status objects for operations that completed (array of status)

(INOUT). Note that in FORTRAN a status object is itself an array.

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The use of this routine makes the order in which your application completes the

requests nondeterministic. An application that processes messages in whatever

order they complete must not make assumptions about that order. For example, if:

((msgA op msgB) op msgC)

can give a different answer than:

((msgB op msgC) op msgA)

the application must be prepared to accept either answer as correct, and must not

assume a second run of the application will give the same answer.

Errors

Invalid count

count < 0

Invalid request array

Invalid request

Truncation occurred

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update (ISEND)

MPI_TESTSOME

Chapter 3. MPI subroutines and functions 461

|
|
|

|

|

|

|
|

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TEST

 MPI_WAITSOME

MPI_TESTSOME

462 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TOPO_TEST, MPI_Topo_test

Purpose

Returns the type of virtual topology associated with a communicator.

C synopsis

#include <mpi.h>

MPI_Topo_test(MPI_Comm comm,int *status);

C++ synopsis

#include mpi.h

int MPI::Comm::Get_topology() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TOPO_TEST(INTEGER COMM,INTEGER STATUS,INTEGER IERROR)

Description

This subroutine returns the type of virtual topology associated with a communicator.

The output of status will be as follows:

MPI_GRAPH

graph topology

MPI_CART

Cartesian topology

MPI_UNDEFINED

no topology

Parameters

comm

The communicator (handle) (IN)

status

The topology type of communicator comm (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

Invalid communicator

Related information

 MPI_CART_CREATE

 MPI_GRAPH_CREATE

MPI_TOPO_TEST

Chapter 3. MPI subroutines and functions 463

MPI_Type_c2f

Purpose

Translates a C data type handle into a FORTRAN handle to the same data type.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Type_c2f(MPI_Type datatype);

Description

This function does not have C++ or FORTRAN bindings. MPI_Type_c2f translates a

C data type handle into a FORTRAN handle to the same data type; it maps a null

handle into a null handle and a non-valid handle into a non-valid handle. The

converted handle is returned as the function’s value. There is no error detection or

return code.

Parameters

datatype

The data type (handle) (IN)

Errors

None.

Related information

 MPI_Type_f2c

MPI_Type_c2f

464 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_COMMIT, MPI_Type_commit

Purpose

Makes a data type ready for use in communication.

C synopsis

#include <mpi.h>

int MPI_Type_commit(MPI_Datatype *datatype);

C++ synopsis

#include mpi.h

void MPI::Datatype::Commit();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_COMMIT(INTEGER DATATYPE,INTEGER IERROR)

Description

A data type object must be committed before you can use it in communication. You

can use an uncommitted data type as an argument in data type constructors.

This subroutine makes a data type ready for use in communication. The data type

is the formal description of a communication buffer. It is not the content of the

buffer.

Once the data type is committed it can be repeatedly reused to communicate the

changing contents of a buffer or buffers with different starting addresses.

Parameters

datatype

The data type that is to be committed (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Basic data types are precommitted. It is not an error to call MPI_TYPE_COMMIT on

a type that is already committed. Types returned by MPI_TYPE_GET_CONTENTS

may or may not already be committed.

Errors

Invalid datatype

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_CONTIGUOUS

 MPI_TYPE_CREATE_DARRAY

 MPI_TYPE_CREATE_SUBARRAY

 MPI_TYPE_FREE

MPI_TYPE_COMMIT

Chapter 3. MPI subroutines and functions 465

MPI_TYPE_GET_CONTENTS

 MPI_TYPE_HINDEXED

 MPI_TYPE_HVECTOR

 MPI_TYPE_INDEXED

 MPI_TYPE_STRUCT

 MPI_TYPE_VECTOR

MPI_TYPE_COMMIT

466 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CONTIGUOUS, MPI_Type_contiguous

Purpose

Returns a new data type that represents the concatenation of count instances of

oldtype.

C synopsis

#include <mpi.h>

int MPI_Type_contiguous(int count,MPI_Datatype oldtype,MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_contiguous(int count) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CONTIGUOUS(INTEGER COUNT,INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

Description

This subroutine returns a new data type that represents the concatenation of count

instances of oldtype. MPI_TYPE_CONTIGUOUS allows replication of a data type

into contiguous locations.

Parameters

count

The replication count (non-negative integer) (IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

Errors

Invalid count

count < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB, or MPI_PACKED

Stride overflow

Extent overflow

Size overflow

Upper or lower bound overflow

MPI_TYPE_CONTIGUOUS

Chapter 3. MPI subroutines and functions 467

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

MPI_TYPE_CONTIGUOUS

468 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_DARRAY, MPI_Type_create_darray

Purpose

Generates the data types corresponding to the distribution of an ndims–dimensional

array of oldtype elements onto an ndims–dimensional grid of logical tasks.

C synopsis

#include <mpi.h>

int MPI_Type_create_darray (int size,int rank,int ndims,int array_of_gsizes[],

 int array_of_distribs[],int array_of_dargs[],

 int array_of_psizes[],int order,MPI_Datatype oldtype,

 MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_darray(int size, int rank, int ndims,

 const int array_of_gsizes[],

 const int array_of_distribs[],

 const int array_of_dargs[],

 const int array_of_psizes[],

 int order) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_DARRAY (INTEGER SIZE,INTEGER RANK,INTEGER NDIMS,

 INTEGER ARRAY_OF_GSIZES(*),INTEGER ARRAY_OF_DISTRIBS(*),

 INTEGER ARRAY_OF_DARGS(*),INTEGER ARRAY_OF_PSIZES(*),

 INTEGER ORDER,INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

Description

MPI_TYPE_CREATE_DARRAY generates the data types corresponding to an

HPF-like distribution of an ndims–dimensional array of oldtype elements onto an

ndims–dimensional grid of logical tasks. The ordering of tasks in the task grid is

assumed to be row-major. See The High Performance FORTRAN Handbook for

more information.

Parameters

size

The size of the task group (positive integer) (IN)

rank

The rank in the task group (nonnegative integer) (IN)

ndims

The number of array dimensions as well as task grid dimensions (positive

integer) (IN)

array_of_gsizes

The number of elements of type oldtype in each dimension of the global array

(array of positive integers) (IN)

array_of_distribs

The distribution of the global array in each dimension (array of state) (IN)

array_of_dargs

The distribution argument in each dimension of the global array (array of

positive integers) (IN)

MPI_TYPE_CREATE_DARRAY

Chapter 3. MPI subroutines and functions 469

array_of_psizes

The size of the logical grid of tasks in each dimension (array of positive

integers) (IN)

order

The array storage order flag (state) (IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid group size

size must be a positive integer

Invalid rank

rank must be a nonnegative integer

Invalid dimension count

ndims must be a positive integer

Invalid array element

Each element of array_of_gsizes and array_of_psizes must be a positive

integer

Invalid distribution element

Each element of array_of_distribs must be either

MPI_DISTRIBUTE_BLOCK, MPI_DISTRIBUTE_CYCLIC, or

MPI_DISTRIBUTE_NONE

Invalid darg element

Each element of array_of_dargs must be a positive integer or equal to

MPI_DISTRIBUTE_DFLT_DARG

Invalid order

order must either be MPI_ORDER_C or MPI_ORDER_FORTRAN

MPI_DATATYPE_NULL not valid

oldtype cannot be equal to MPI_DATATYPE_NULL

Undefined datatype

oldtype is not a defined data type

Invalid datatype

oldtype cannot be: MPI_LB, MPI_PACKED, or MPI_UB

Invalid grid size

The product of the elements of array_of_psizes must be equal to size

Invalid block distribution

The condition (array_of_psizes[i]* array_of_dargs[i])<array_of_gsizes[i] must

be satisfied for all indices i between 0 and (ndims-1) for which a block

distribution is specified

MPI_TYPE_CREATE_DARRAY

470 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Invalid psize element

Each element of array_of_psizes must be equal to 1 if the same element of

array_of_distribs has a value of MPI_DISTRIBUTE_NONE

Stride overflow

Extent overflow

Size overflow

Upper or lower bound overflow

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

MPI_TYPE_CREATE_DARRAY

Chapter 3. MPI subroutines and functions 471

MPI_TYPE_CREATE_F90_COMPLEX, MPI_Type_create_f90_complex

Purpose

Returns a predefined MPI data type that matches a COMPLEX variable of KIND

selected_real_kind(p, r).

C synopsis

#include <mpi.h>

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

static MPI::Datatype MPI::Datatype::Create_f90_complex(int p, int r);

FORTRAN synopsis

use mpi

MPI_TYPE_CREATE_F90_COMPLEX(INTEGER P, INTEGER R, INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns a predefined MPI data type that matches a COMPLEX

variable of KIND=selected_real_kind(p, r). Either p or r may be omitted from calls to

selected_real_kind(p, r), but not both. Analogously, either p or r may be set to

MPI_UNDEFINED in this subroutine. In communication, an MPI data type A

returned by MPI_TYPE_CREATE_F90_COMPLEX matches a data type B if and

only if B was returned by MPI_TYPE_CREATE_F90_COMPLEX called with the

same values for p and r, or B is a duplicate of such a data type.

Parameters

p The precision in decimal digits (integer) (IN)

r The decimal exponent range (integer) (IN)

newtype

The requested MPI data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

It is erroneous to supply values for p and r that are not supported by the compiler.

An MPI_Datatype returned by this subroutine is already committed. It cannot be

freed with MPI_TYPE_FREE. It can be used with the MPI reduction functions.

Errors

Fatal errors:

MPI already finalized

MPI not initialized

p or r value outside range supported by compiler

MPI_TYPE_CREATE_F90_COMPLEX

472 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_TYPE_CREATE_F90_INTEGER

 MPI_TYPE_CREATE_F90_REAL

MPI_TYPE_CREATE_F90_COMPLEX

Chapter 3. MPI subroutines and functions 473

MPI_TYPE_CREATE_F90_INTEGER, MPI_Type_create_f90_integer

Purpose

Returns a predefined MPI data type that matches an INTEGER variable of KIND

selected_integer_kind(r).

C synopsis

#include <mpi.h>

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

static MPI::Datatype MPI::Datatype::Create_f90_integer(int r);

FORTRAN synopsis

use mpi

MPI_TYPE_CREATE_F90_INTEGER(INTEGER R, INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns a predefined MPI data type that matches an INTEGER

variable of KIND=selected_integer_kind(r). In communication, an MPI data type A

returned by MPI_TYPE_CREATE_F90_INTEGER matches a data type B if and only

if B was returned by MPI_TYPE_CREATE_F90_INTEGER called with the same

value for r, or B is a duplicate of such a data type.

Parameters

r The decimal exponent range, that is, the number of decimal digits (integer) (IN)

newtype

The requested MPI data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

It is erroneous to supply values for r that are not supported by the compiler.

An MPI_Datatype returned by this subroutine is already committed. It cannot be

freed with MPI_TYPE_FREE. It can be used with the MPI reduction functions.

Errors

Fatal errors:

MPI already finalized

MPI not initialized

r value outside range supported by compiler

Related information

 MPI_TYPE_CREATE_F90_COMPLEX

 MPI_TYPE_CREATE_F90_REAL

MPI_TYPE_CREATE_F90_INTEGER

474 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_F90_REAL, MPI_Type_create_f90_real

Purpose

Returns a predefined MPI data type that matches a REAL variable of KIND

selected_real_kind(p, r).

C synopsis

#include <mpi.h>

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

static MPI::Datatype MPI::Datatype::Create_f90_real(int p, int r);

FORTRAN synopsis

use mpi

MPI_TYPE_CREATE_F90_REAL(INTEGER P, INTEGER R, INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns a predefined MPI data type that matches a REAL variable of

KIND=selected_real_kind(p, r). In the model described below, it returns a handle for

the element D(p, r). Either p or r may be omitted from calls to selected_real_kind(p,

r), but not both. Analogously, either p or r may be set to MPI_UNDEFINED in calling

this subroutine. In communication, an MPI data type A returned by

MPI_TYPE_CREATE_F90_REAL matches a data type B if and only if B was

returned by MPI_TYPE_CREATE_F90_REAL called with the same values for p and

r, or B is a duplicate of such a data type.

Parameters

p The precision in decimal digits (integer) (IN)

r The decimal exponent range (integer) (IN)

newtype

The requested MPI data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

It is erroneous to supply values for p and r that are not supported by the compiler.

An MPI_Datatype returned by this subroutine is already committed. It cannot be

freed with MPI_TYPE_FREE. It can be used with the MPI reduction functions.

Errors

Fatal errors:

MPI already finalized

MPI not initialized

p or r value outside range supported by compiler

MPI_TYPE_CREATE_F90_REAL

Chapter 3. MPI subroutines and functions 475

Related information

 MPI_TYPE_CREATE_F90_COMPLEX

 MPI_TYPE_CREATE_F90_INTEGER

MPI_TYPE_CREATE_F90_REAL

476 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_HINDEXED, MPI_Type_create_hindexed

Purpose

Returns a new data type that represents count blocks. Each block is defined by an

entry in array_of_blocklengths and array_of_displacements. Displacements are

expressed in bytes.

C synopsis

#include <mpi.h>

int MPI_Type_create_hindexed(int count, int array_of_blocklengths[],

 MPI_Aint array_of_displacements[],

 MPI_Datatype oldtype,MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_hindexed(int count,

 const int array_of_blocklengths[],

 const MPI::Aint array_of_displacements[])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_HINDEXED(INTEGER COUNT, INTEGER ARRAY_OF_BLOCKLENGTHS(*),

 INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF DISPLACEMENTS(*),

 INTEGER OLDTYPE, INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns a new data type that represents count blocks. Each block is

defined by an entry in array_of_blocklengths and array_of_displacements.

Displacements are expressed in bytes rather than in multiples of the oldtype extent

(the way they are expressed in MPI_TYPE_INDEXED).

Parameters

count

The number of blocks and the number of entries in array_of_displacements and

array_of_blocklengths (non-negative integer) (IN)

array_of_blocklengths

The number of elements in each block (array of non-negative integers) (IN)

array_of_displacements

A byte displacement for each block (array of integer) (IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

MPI_TYPE_CREATE_HINDEXED

Chapter 3. MPI subroutines and functions 477

MPI_TYPE_CREATE_HINDEXED is synonymous with MPI_TYPE_HINDEXED in C

and C++, or in FORTRAN when default INTEGERs are address-sized.

(MPI_TYPE_HINDEXED is not available in C++.) In FORTRAN,

MPI_TYPE_CREATE_HINDEXED accepts arguments of type

INTEGER(KIND=MPI_ADDRESS_KIND), for array_of_displacements where type

MPI_Aint is used in C.

If FORTRAN 64-bit applications must be written to be portable to systems that do

not support FORTRAN 90 KIND declarations, it is also correct to declare the

(KIND=MPI_ADDRESS_KIND) arguments as INTEGER*8. The KIND format has the

advantage of allowing the same source code to compile for either 32-bit or 64-bit

processing. The MPI_TYPE_HINDEXED binding is retained to support old codes

but any new code, whether C or FORTRAN should use

MPI_TYPE_CREATE_HINDEXED.

Note that the MPI-1 routines that use a FORTRAN INTEGER where C bindings

specify MPI_Aint will work correctly as long as the values they represent fit in a

32-bit signed integer. It can be difficult to predict reliably when values will remain in

range and the loss of high-order bits when overflow does occur will not raise an

MPI error, so this may lead to obscure application failures.

Errors

Fatal errors:

Invalid count

count < 0

Invalid blocklength

blocklength[i] < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

Related information

 MPI_GET_ADDRESS

 MPI_TYPE_CREATE_HVECTOR

 MPI_TYPE_CREATE_STRUCT

MPI_TYPE_CREATE_HINDEXED

478 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_HVECTOR, MPI_Type_create_hvector

Purpose

Returns a new data type that represents equally-spaced blocks. The spacing

between the start of each block is given in bytes.

C synopsis

#include <mpi.h>

int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,

 MPI_Datatype oldtype, MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_hvector(int count, int blocklength,

 MPI::Aint stride) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_HVECTOR(INTEGER COUNT, INTEGER BLOCKLENGTH,

 INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE,

 INTEGER OLDTYPE, INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns a new data type that represents count equally-spaced

blocks. Each block is a concatenation of blocklength instances of oldtype. The

origins of the blocks are spaced stride units apart, where the counting unit is one

byte.

Parameters

count

The number of blocks (non-negative integer) (IN)

blocklength

The number of elements in each block (non-negative integer) (IN)

stride

An integer specifying the number of bytes between start of each block (IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

MPI_TYPE_CREATE_HVECTOR is synonymous with MPI_TYPE_HVECTOR in C

and C++, or in FORTRAN when default INTEGERs are address-sized.

(MPI_TYPE_HVECTOR is not available in C++.) In FORTRAN,

MPI_TYPE_CREATE_HVECTOR

Chapter 3. MPI subroutines and functions 479

MPI_TYPE_CREATE_HVECTOR accepts an argument of type

INTEGER(KIND=MPI_ADDRESS_KIND) for stride where type MPI_Aint is used in

C.

If FORTRAN 64-bit applications must be written to be portable to systems that do

not support FORTRAN 90 KIND declarations, it is also correct to declare the

(KIND=MPI_ADDRESS_KIND) arguments as INTEGER*8. The KIND format has the

advantage of allowing the same source code to compile for either 32-bit or 64-bit

processing. The MPI_TYPE_HVECTOR binding is retained to support old codes but

any new code, whether C or FORTRAN should use

MPI_TYPE_CREATE_HVECTOR.

Note that the MPI-1 routines that use a FORTRAN INTEGER where C bindings

specify MPI_Aint will work correctly as long as the values they represent fit in a

32-bit signed integer. It can be difficult to predict reliably when values will remain in

range and the loss of high-order bits when overflow does occur will not raise an

MPI error, so this may lead to obscure application failures.

Errors

Fatal errors:

Invalid count

count < 0

Invalid blocklength

blocklength < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

Related information

 MPI_GET_ADDRESS

 MPI_TYPE_CREATE_HINDEXED

 MPI_TYPE_CREATE_STRUCT

MPI_TYPE_CREATE_HVECTOR

480 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_INDEXED_BLOCK,

MPI_Type_create_indexed_block

Purpose

Returns a new data type that represents count blocks.

C synopsis

#include <mpi.h>

int MPI_Type_create_indexed_block(int count, int blocklength,

 int array_of_displacements[],

 MPI_Datatype oldtype, MPI_datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_indexed_block(int count, int blocklength,

 const int array_of_displacements[])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_INDEXED_BLOCK(INTEGER COUNT, INTEGER BLOCKLENGTH,

 INTEGER ARRAY_OF DISPLACEMENTS(*), INTEGER OLDTYPE,

 INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns a new data type that represents count blocks. Each block is

defined by an entry in array_of_displacements. Displacements are expressed in

units of extent(oldtype).

Parameters

count

The length of array_of_displacements (non-negative integer) (IN)

blocklength

The size of the block (non-negative integer) (IN). All blocks are the same size.

array_of_displacements

The displacement of each block in units of extent(oldtype) (array of integer)

(IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

Errors

Fatal errors:

MPI_TYPE_CREATE_INDEXED_BLOCK

Chapter 3. MPI subroutines and functions 481

Invalid blocklength

blocklength < 0

Invalid count

count < 0

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI already finalized

MPI not initialized

Undefined oldtype

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_INDEXED

MPI_TYPE_CREATE_INDEXED_BLOCK

482 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_KEYVAL, MPI_Type_create_keyval

Purpose

Creates a new attribute key for a data type.

C synopsis

#include <mpi.h>

int MPI_Type_create_keyval (MPI_Type_copy_attr_function *type_copy_attr_fn,

 MPI_Type_delete_attr_function *type_delete_attr_fn,

 int *type_keyval, void *extra_state);

C++ synopsis

#include mpi.h

int MPI::Datatype::Create_keyval(MPI::Datatype::Copy_attr_function*,

 type_copy_attr_fn,MPI::Datatype::Delete_attr_function*,

 type_delete_attr_fn, void* extra_state);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_KEYVAL(EXTERNAL TYPE_COPY_ATTR_FN, EXTERNAL TYPE_DELETE_ATTR_FN,

 INTEGER TYPE_KEYVAL, INTERGER EXTRA_STATE, INTEGER IERROR)

Description

This subroutine creates a new attribute key for a data type and returns a handle to

it in the type_keyval argument. A key is unique in a task and is opaque to the user.

Once created, a key can be used to associate an attribute with a data type and

access it within the local task. The copy function type_copy_attr_fn is invoked when

a data type is duplicated by MPI_TYPE_DUP. Attribute copy functions are invoked

in arbitrary order for each key value in oldtype. If the copy function sets its flag

argument to 0, the attribute is deleted in the new data type. Otherwise, the new

attribute is set using the attribute_val_out argument of

MPI_Type_copy_attr_function.

The attribute delete function type_delete_attr_fn is called by MPI_TYPE_FREE,

MPI_TYPE_DELETE_ATTR, and MPI_TYPE_SET_ATTR. The delete function takes

whatever steps are needed by the user code to remove an attribute. The predefined

functions MPI_TYPE_NULL_COPY_FN and MPI_TYPE_DUP_FN can be used to

never copy or to always copy, respectively. The predefined function

MPI_TYPE_NULL_DELETE_FN can be used if no special handling of attribute

deletions is required. The attribute copy and delete functions are defined as follows

(only the C form is shown here):

int MPI_Type_copy_attr_function(MPI_Datatype oldtype, int type_keyval,

 void *extra_state, void *attribute_val_in,

 void *attribute_val_out, int *flag)

int MPI_Type_delete_attr_function(MPI_Datatype type, int type_keyval,

 void *attribute_val, void *extra_state)

The attribute_val_in parameter is the value of the attribute. The attribute_val_out

parameter is the address of the value, so the function can set a new value. The

attribute_val_out parameter is logically a void**, but it is prototyped as void*, to

avoid the need for complex casting.

MPI_TYPE_CREATE_KEYVAL

Chapter 3. MPI subroutines and functions 483

Parameters

type_copy_attr_fn

The copy callback function for type_keyval (function) (IN)

type_delete_attr_fn

The delete callback function for type_keyval (function) (IN)

type_keyval

The key value for future access (integer) (OUT)

extra_state

The extra state for callback functions (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized (MPI_ERR_OTHER)

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_KEYVAL_CREATE

 MPI_TYPE_FREE_KEYVAL

MPI_TYPE_CREATE_KEYVAL

484 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_RESIZED, MPI_Type_create_resized

Purpose

Duplicates a data type and changes the upper bound, lower bound, and extent.

C synopsis

#include <mpi.h>

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint extent,

 MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_resized(const MPI::Aint lb,

 const MPI::Aint extent)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_RESIZED(INTEGER OLDTYPE, INTEGER LB,

 INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT,

 INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns in newtype a handle to a new data type that is identical to

oldtype, except that the lower bound of this new data type is set to lb, and its upper

bound is set to lb + extent. Any previous lb and ub markers are erased, and a new

pair of lower bound and upper bound markers are put in the positions indicated by

the lb and extent arguments. This affects the behavior of the data type when used

in communication operations, with count > 1, and when used in the construction of

new derived data types.

Parameters

oldtype

The input data type (handle) (IN)

lb The new lower bound of the data type (integer) (IN)

extent

The new extent of the data type (integer) (IN)

newtype

The output data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The new data type must be committed using MPI_TYPE_COMMIT before it can be

used in communication.

Errors

Fatal errors:

Copy callback failed

MPI_TYPE_CREATE_RESIZED

Chapter 3. MPI subroutines and functions 485

Invalid datatype

MPI not initialized

MPI already finalized

Null datatype

MPI_TYPE_CREATE_RESIZED

486 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_STRUCT, MPI_Type_create_struct

Purpose

Returns a new data type that represents count blocks. Each block is defined by an

entry in array_of_blocklengths, array_of_displacements and array_of_types.

Displacements are expressed in bytes.

C synopsis

#include <mpi.h>

int MPI_Type_create_struct(int count, int array_of_blocklengths[],

 MPI_Aint array_of_displacements[], MPI_Datatype array_of_types[],

 MPI_datatype *newtype);

C++ synopsis

#include mpi.h

static MPI::Datatype MPI::Datatype::Create_struct(int count,

 const int array_of_blocklengths[],

 const MPI::Aint array_of_displacements[],

 const MPI::Datatype array_of_types[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_STRUCT(INTEGER COUNT, INTEGER ARRAY_OF_BLOCKLENGTHS(*),

 INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF DISPLACEMENTS(*),

 INTEGER ARRAY_OF_TYPES(*), INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine returns a new data type that represents count blocks. Each block is

defined by an entry in array_of_blocklengths, array_of_displacements and

array_of_types. Displacements are expressed in bytes.

Parameters

count

An integer specifying the number of blocks. It is also the number of entries in

arrays array_of_types, array_of_displacements and array_of_blocklengths. (IN)

array_of_blocklengths

The number of elements in each block (array of integer). That is,

array_of_blocklengths(i) specifies the number of instances of type

array_of_types(i) in block(i). (IN)

array_of_displacements

The byte displacement of each block (array of integer) (IN)

array_of_types

The type of the elements in each block. That is, block(i) is made of a

concatenation of type array_of_types(i) (array of handles to data type objects)

(IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_TYPE_CREATE_STRUCT

Chapter 3. MPI subroutines and functions 487

Notes

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

MPI_TYPE_CREATE_STRUCT is synonymous with MPI_TYPE_STRUCT in C and

C++, or in FORTRAN when default INTEGERs are address-sized.

(MPI_TYPE_STRUCT is not available in C++.) In FORTRAN,

MPI_TYPE_CREATE_STRUCT accepts arguments of type

INTEGER(KIND=MPI_ADDRESS_KIND) for array_of_displacements where type

MPI_Aint is used in C.

If FORTRAN 64-bit applications must be written to be portable to systems that do

not support FORTRAN 90 KIND declarations, it is also correct to declare the

(KIND=MPI_ADDRESS_KIND) arguments as INTEGER*8. The KIND format has the

advantage of allowing the same source code to compile for either 32-bit or 64-bit

processing. The MPI_TYPE_STRUCT binding is retained to support old codes but

any new code, whether C or FORTRAN should use MPI_TYPE_CREATE_STRUCT.

Note that the MPI-1 routines that use a FORTRAN INTEGER where C bindings

specify MPI_Aint will work correctly as long as the values they represent fit in a

32-bit signed integer. It can be difficult to predict reliably when values will remain in

range and the loss of high-order bits when overflow does occur will not raise an

MPI error, so this may lead to obscure application failures.

Errors

Fatal errors:

Invalid count

count < 0

Invalid blocklength

blocklength[i] < 0

Undefined oldtype in array_of_types

MPI not initialized

MPI already finalized

Related information

 MPI_GET_ADDRESS

 MPI_TYPE_CREATE_HINDEXED

 MPI_TYPE_CREATE_HVECTOR

MPI_TYPE_CREATE_STRUCT

488 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_CREATE_SUBARRAY, MPI_Type_create_subarray

Purpose

Returns a new data type that represents an ndims-dimensional subarray of an

ndims-dimensional array.

C synopsis

#include <mpi.h>

int MPI_Type_create_subarray (int ndims,int array_of_sizes[],

 int array_of_subsizes[],int array_of_starts[],

 int order,MPI_Datatype oldtype,MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_subarray(int ndims, const int array_of_sizes[],

 const int array_of_subsizes[],

 const int array_of_starts[],

 int order) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_CREATE_SUBARRAY (INTEGER NDIMS,INTEGER ARRAY_OF_SUBSIZES(*),

 INTEGER ARRAY_OF_SIZES(*),INTEGER ARRAY_OF_STARTS(*),

 INTEGER ORDER,INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

Description

MPI_TYPE_CREATE_SUBARRAY creates an MPI data type describing an

ndims-dimensional subarray of an ndims-dimensional array. The subarray may be

situated anywhere within the full array and may be of any nonzero size up to the

size of the larger array as long as it is confined within this array.

This function facilitates creating filetypes to access arrays distributed in blocks

among tasks to a single file that contains the full array.

Parameters

ndims

The number of array dimensions, a positive integer (IN)

array_of_sizes

The number of elements of type oldtype in each dimension of the full array

(array of positive integers) (IN)

array_of_subsizes

The number of type oldtype in each dimension of the subarray (array of positive

integers) (IN)

array_of_starts

The starting coordinates of the subarray in each dimension (array of

nonnegative integers) (IN)

order

The array storage order flag (state) (IN)

oldtype

The array element data type (handle) (IN)

MPI_TYPE_CREATE_SUBARRAY

Chapter 3. MPI subroutines and functions 489

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

MPI not initialized

MPI already finalized

Invalid dimension count

ndims must be a positive integer

Invalid array element

Each element of array_of_sizes and array_of_subsizes must be a positive

integer, and each element of array_of_starts must be a nonnegative integer

Invalid order

order must be either MPI_ORDER_C or MPI_ORDER_FORTRAN

MPI_DATATYPE_NULL not valid

oldtype cannot be equal to MPI_DATATYPE_NULL

Undefined datatype

oldtype is not a defined data type

Invalid datatype

oldtype cannot be: MPI_LB, MPI_PACKED, or MPI_UB

Invalid subarray size

Each element of array_of_subsizes cannot be greater than the same

element of array_of_sizes

Invalid start element

The subarray must be fully contained within the full array.

Stride overflow

Extent overflow

Size overflow

Upper or lower bound overflow

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

MPI_TYPE_CREATE_SUBARRAY

490 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_DELETE_ATTR, MPI_Type_delete_attr

Purpose

Deletes an attribute from a data type.

C synopsis

#include <mpi.h>

int MPI_Type_delete_attr (MPI_Datatype type, int type_keyval);

C++ synopsis

#include mpi.h

void MPI::Datatype::Delete_attr(int type_keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_DELETE_ATTR(INTEGER TYPE, INTEGER TYPE_KEYVAL, INTEGER IERROR)

Description

This subroutine deletes an attribute from data type type.

Parameters

type

The data type from which the attribute is deleted (handle) (INOUT)

type_keyval

The key value (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Invalid datatype (MPI_ERR_TYPE)

Null datatype (MPI_ERR_TYPE)

Invalid attribute key (MPI_ERR_ARG) type_keyval is undefined

Wrong keytype (MPI_ERR_ARG) attribute key is not a datatype key

Predefined attribute key (MPI_ERR_ARG)

MPI not initialized (MPI_ERR_OTHER)

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_TYPE_GET_ATTR

 MPI_TYPE_SET_ATTR

MPI_TYPE_DELETE_ATTR

Chapter 3. MPI subroutines and functions 491

MPI_TYPE_DUP, MPI_Type_dup

Purpose

Duplicates a data type, including any cached information.

C synopsis

#include <mpi.h>

int MPI_Type_dup (MPI_Datatype type, MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Dup() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_DUP(INTEGER TYPE, INTEGER NEWTYPE, INTEGER IERROR)

Description

This subroutine is a new type constructor that duplicates the existing type with

associated key values. For each key value, the respective copy callback function

determines the attribute value associated with this key in the new communicator.

One particular action that a copy callback may take is to delete the attribute from

the new data type. MPI_TYPE_DUP returns in newtype a new data type with

exactly the same properties as type and any copied cached information. The new

data type has an identical upper bound and lower bound and yields the same net

result when fully decoded with the MPI_TYPE_GET_CONTENTS and

MPI_TYPE_GET_ENVELOPE functions. The newtype has the same committed

state as type.

Parameters

type

The data type (handle) (IN)

newtype

A copy of type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_TYPE_DUP semantic is different from that of MPI_FILE_GET_VIEW and

MPI_TYPE_GET_CONTENTS. The latter subroutines return a new reference to an

existing data type object, while MPI_TYPE_DUP creates a new object. The

distinction becomes important only when using data type attributes.

Errors

Fatal errors:

Invalid datatype (MPI_ERR_TYPE)

Null datatype (MPI_ERR_TYPE)

MPI not initialized (MPI_ERR_OTHER)

MPI_TYPE_DUP

492 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_TYPE_FREE

 MPI_TYPE_SET_NAME

MPI_TYPE_DUP

Chapter 3. MPI subroutines and functions 493

MPI_TYPE_EXTENT, MPI_Type_extent

Purpose

Returns the extent of any defined data type.

C synopsis

#include <mpi.h>

int MPI_Type_extent(MPI_Datatype datatype,MPI_Aint *size);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_EXTENT(INTEGER DATATYPE,INTEGER EXTENT,INTEGER IERROR)

Description

This subroutine returns the extent of a data type. The default extent of a data type

is the span from the first byte to the last byte occupied by entries in this data type

and rounded up to satisfy alignment requirements.

Parameters

datatype

The data type (handle) (IN)

size

The data type extent (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_TYPE_GET_EXTENT supersedes MPI_TYPE_EXTENT.

Rounding for alignment is not done when MPI_UB is used to define the data type.

Types defined with MPI_LB, MP_UB, or with any type that itself contains MPI_LB or

MPI_UB may return an extent that is not directly related to the layout of data in

memory. Refer to “MPI_TYPE_STRUCT, MPI_Type_struct” on page 527 or

“MPI_TYPE_CREATE_STRUCT, MPI_Type_create_struct” on page 487 for more

information on MPI_LB and MPI_UB.

MPI_TYPE_CREATE_RESIZED can also alter default extent.

You can still use this subroutine in FORTRAN 64-bit applications if you know that all

data type extents can be represented by an INTEGER, but you do so at your own

risk. MPI_TYPE_GET_EXTENT should be used in new codes.

Errors

Invalid datatype

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_SIZE

MPI_TYPE_EXTENT

494 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Type_f2c

Purpose

Returns a C handle to a data type.

C synopsis

#include <mpi.h>

MPI_Type MPI_Type_f2c(MPI_Fint datatype);

Description

This function does not have C++ or FORTRAN bindings. MPI_Type_f2c returns a C

handle to a data type. If datatype is a valid FORTRAN handle to a data type,

MPI_Type_f2c returns a valid C handle to that same data type. If datatype is set to

the FORTRAN value MPI_DATATYPE_NULL, MPI_Type_f2c returns the equivalent

null C handle. If datatype is not a valid FORTRAN handle, MPI_Type_f2c returns a

non-valid C handle. The converted handle is returned as the function’s value. There

is no error detection or return code.

Parameters

datatype

The data type (handle) (IN)

Errors

None.

Related information

 MPI_Type_c2f

MPI_Type_f2c

Chapter 3. MPI subroutines and functions 495

MPI_TYPE_FREE, MPI_Type_free

Purpose

Marks a data type for deallocation.

C synopsis

#include <mpi.h>

int MPI_Type_free(MPI_Datatype *datatype);

C++ synopsis

#include mpi.h

void MPI::Datatype::Free();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_FREE(INTEGER DATATYPE,INTEGER IERROR)

Description

This subroutine marks the data type object associated with datatype for

deallocation. It sets datatype to MPI_DATATYPE_NULL. All communication currently

using this data type completes normally. Derived data types defined from the freed

data type are not affected.

Parameters

datatype

The data type to be freed (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_FILE_GET_VIEW and MPI_TYPE_GET_CONTENTS both return new

references or handles for existing MPI_Datatypes. Each new reference to a derived

type should be freed after the reference is no longer needed. New references to

named types must not be freed. You can identify a derived data type by calling

MPI_TYPE_GET_ENVELOPE and checking that the combiner is not

MPI_COMBINER_NAMED. MPI cannot discard a derived MPI_Datatype if there are

any references to it that have not been freed by MPI_TYPE_FREE.

Errors

Invalid datatype

Predefined datatype

Type is already free

MPI not initialized

MPI already finalized

Related information

 MPI_FILE_GET_VIEW

 MPI_TYPE_COMMIT

MPI_TYPE_FREE

496 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

MPI_TYPE_FREE

Chapter 3. MPI subroutines and functions 497

MPI_TYPE_FREE_KEYVAL, MPI_Type_free_keyval

Purpose

Frees a data type key value.

C synopsis

#include <mpi.h>

int MPI_Type_free_keyval (int *type_keyval);

C++ synopsis

#include mpi.h

void MPI::Datatype::Free_keyval(int& type_keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_FREE_KEYVAL(INTEGER TYPE_KEYVAL, INTEGER IERROR)

Description

This subroutine frees the key referred to by the type_keyval argument and sets

keyval to MPI_KEYVAL_INVALID.

Parameters

type_keyval

The key value (integer) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Fatal errors:

Invalid attribute key (MPI_ERR_ARG) type_keyval is undefined

Predefined attribute key (MPI_ERR_ARG)

Wrong keytype (MPI_ERR_ARG) attribute key is not a datatype key

MPI not initialized (MPI_ERR_OTHER)

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_TYPE_CREATE_KEYVAL

MPI_TYPE_FREE_KEYVAL

498 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_ATTR, MPI_Type_get_attr

Purpose

Attaches an attribute to a data type.

C synopsis

#include <mpi.h>

int MPI_Type_get_attr (MPI_Datatype type, int type_keyval,

 void *attribute_val, int *flag);

C++ synopsis

#include mpi.h

bool MPI::Datatype::Get_attr(int type_keyval, void* attribute_val) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_GET_ATTR(INTEGER TYPE, INTEGER TYPE_KEYVAL, INTEGER ATTRIBUTE_VAL,

 LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine attaches an attribute to data type type.

Parameters

type

The data type to which the attribute is attached (handle) (IN)

type_keyval

The key value (integer) (IN)

attribute_val

The attribute value, unless flag = false (OUT)

flag

Set to false if no attribute is associated with the key (logical) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The implementation of MPI_TYPE_SET_ATTR and MPI_TYPE_GET_ATTR involves

saving a single word of information in the data type. The languages C and

FORTRAN have different approaches to using this capability:

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_TYPE_SET_ATTR, you allocate some storage

for the attribute structure and then call MPI_TYPE_SET_ATTR to record the

address of this structure. You must make sure that the structure remains intact

as long as it may be useful. As the programmer, you will also declare a variable

of type “pointer to attribute structure” and pass the address of this variable when

calling MPI_TYPE_GET_ATTR. Both MPI_TYPE_SET_ATTR and

MPI_TYPE_GET_ATTR take a void* parameter, but this does not imply that the

same parameter is passed to either one.

MPI_TYPE_GET_ATTR

Chapter 3. MPI subroutines and functions 499

In FORTRAN:

MPI_TYPE_SET_ATTR records an address-size integer and

MPI_TYPE_GET_ATTR returns the address-size integer. As the programmer,

you can choose to encode all attribute information in this integer or maintain

some kind of database in which the integer can index. Either of these

approaches will port to other MPI implementations.

 Many of the FORTRAN compilers include an additional feature that allows some

of the same functions a C programmer would use. These compilers support the

POINTER type, often referred to as a Cray pointer. XL FORTRAN is one of the

compilers that supports the POINTER type. For more information, see IBM XL

FORTRAN Compiler for AIX Reference

Errors

Fatal errors:

Invalid datatype (MPI_ERR_TYPE)

Null datatype (MPI_ERR_TYPE)

Invalid attribute key (MPI_ERR_ARG) type_keyval is undefined

Wrong keytype (MPI_ERR_ARG) attribute key is not a datatype key

MPI not initialized (MPI_ERR_OTHER)

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_TYPE_DELETE_ATTR

 MPI_TYPE_SET_ATTR

MPI_TYPE_GET_ATTR

500 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_CONTENTS, MPI_Type_get_contents

Purpose

Obtains the arguments used in the creation of the data type.

C synopsis

#include <mpi.h>

int MPI_Type_get_contents(MPI_Datatype datatype,int *max_integers,

 int *max_addresses, int *max_datatypes,

 int array_of_integers[],

 int array_of_addresses[],

 int array_of_datatypes[]);

C++ synopsis

#include mpi.h

void MPI::Datatype::Get_contents(int max_integers, int max_addresses,

 int max_datatypes, int array_of_integers[],

 MPI::Aint array_of_addresses[],

 MPI::Datatype array_of_datatypes[])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_GET_CONTENTS(INTEGER DATATYPE, INTEGER MAX_INTEGERS,INTEGER MAX_ADDRESSES,

 INTEGER MAX_DATATYPES,INTEGER ARRAY_of_INTEGERS, INTEGER ARRAY_OF_ADDRESSES,

 INTEGER ARRAY_of_DATATYPES, INTEGER IERROR)

Description

MPI_TYPE_GET_CONTENTS identifies the combiner and returns the arguments

that were used with this combiner to create the data type of interest. A call to

MPI_TYPE_GET_CONTENTS is normally preceded by a call to

MPI_TYPE_GET_ENVELOPE to discover whether the type of interest is one that

can be decoded and if so, how large the output arrays must be. An

MPI_COMBINER_NAMED data type is a predefined type that may not be decoded.

The data type handles returned in array_of_datatypes can include both named and

derived types. The derived types may or may not already be committed. Each entry

in array_of_datatypes is a separate data type handle that must eventually be freed

if it represents a derived type.

Parameters

datatype

The data type to access (handle) (IN)

max_integers

The number of elements in array_of_integers (non-negative integer) (IN)

max_addresses

The number of elements in the array_of_addresses (non-negative integer) (IN)

max_datatypes

The number of elements in array_of_datatypes (non-negative integer) (IN)

array_of_integers

Contains integer arguments used in the constructing data type (array of

integers) (OUT)

MPI_TYPE_GET_CONTENTS

Chapter 3. MPI subroutines and functions 501

array_of_addresses

Contains address arguments used in the constructing data type (array of

integers) (OUT)

array_of_datatypes

Contains data type arguments used in the constructing data type (array of

handles) (OUT)

If the combiner is MPI_COMBINER_NAMED, it is erroneous to call

MPI_TYPE_GET_CONTENTS.

Table 4 lists the combiners and constructor arguments. The lowercase names of the

arguments are shown.

 Table 4. Combiners and constructor arguments

Constructor argument C location FORTRAN location

ni

na

nd

MPI_COMBINER_DUP

oldtype d[0] D(1) 0

0

1

MPI_COMBINER_CONTIGUOUS

count

oldtype

i[0]

d[0]

I(1)

D(1)

1

0

1

MPI_COMBINER_VECTOR

count

blocklength

stride

oldtype

i[0]

i[1]

i[2]

d[0]

I(1)

I(2)

I(3)

D(1)

3

0

1

MPI_COMBINER_HVECTOR

MPI_COMBINER_HVECTOR_INTEGER

count

blocklength

stride

oldtype

i[0]

i[1]

a[0]

d[0]

I(1)

I(2)

A(1)

D(1)

2

1

1

MPI_COMBINER_INDEXED

count

array_of_blocklengths

array_of_displacements

oldtype

i[0]

i[1] to i[i[0]]

i[i[0]+1] to i[2*i[0]]

d[0]

I(1)

I(2) to I(I(1)+1)

I(I(1)+2) to I(2*I(1)+1)

D(1)

2*count+1

0

1

MPI_COMBINER_HINDEXED

MPI_COMBINER_HINDEXED_INTEGER

count

array_of_blocklengths

array_of_displacements

oldtype

i[0]

i[1] to i[i[0]]

a[0] to a[i[0]-1]

d[0]

I(1)

I(2) to I(I(1)+1)

A(1) to A(I(1))

D(1)

count+1

count

1

MPI_COMBINER_INDEXED_BLOCK

count

blocklength

array_of_displacements

oldtype

i[0]

i[1]

i[2] to i[i[0]+1]

d[0]

I(1)

I(2)

I(3) to I(I(1)+2)

D(1)

count+2

0

1

MPI_TYPE_GET_CONTENTS

502 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Table 4. Combiners and constructor arguments (continued)

Constructor argument C location FORTRAN location

ni

na

nd

MPI_COMBINER_STRUCT

MPI_COMBINER_STRUCT_INTEGER

count

array_of_blocklengths

array_of_displacements

array_of_types

i[0]

i[1] to i[i[0]]

a[0] to a[i[0]-1]

d[0] to d[i[0]-1]

I(1)

I(2) to I(I(1)+1)

A(1) to A(I(1))

D(1)

count+1

count

count

MPI_COMBINER_SUBARRAY

ndims

array_of_sizes

array_of_subsizes

array_of_starts

order

oldtype

i[0]

i[1] to i[i[0]]

i[i[0]+1] to i[2*i[0]]

i[2*i[0]+1] to i[3*i[0]]

i[3*i[0]+1]

d[0]

I(1)

I(2) to I(I(1)+1)

I(I(1)+2) to I(2*I(1)+1)

I(2*I(1)+2) to I(3*I(1)+1)

I(3*I(1)+2)

D(1)

3*ndims+2

0

1

MPI_COMBINER_DARRAY

size

rank

ndims

array_of_gsizes

array_of_distribs

array_of_dargs

array_of_psizes

order

oldtype

i[0]

i[1]

i[2]

i[3] to i[i[2]+2]

i[i[2]+3] to i[2*i[2]+2]

i[2*i[2]+3] to i[3*i[2]+2]

i[3*i[2]+3] to i[4*i[2]+2]

i[4*i[2]+3]

d[0]

I(1)

I(2)

I(3)

I(4) to I(I(3)+3)

I(I(3)+4) to I(2*I(3)+3)

I(2*I(3)+4) to I(3*I(3)+3)

I(3*I(3)+4) to I(4*I(3)+3)

I(4*I(3)+4)

D(1)

4*ndims+4

0

1

MPI_COMBINER_F90_REAL

MPI_COMBINER_F90_COMPLEX

p

r

i[0]

i[1]

I(1)

I(2)

2

0

0

MPI_COMBINER_F90_INTEGER

r i[0] I(1) 1

0

0

MPI_COMBINER_RESIZED

lb

extent

oldtype

a[0]

a[1]

d[0]

A(1)

A(2)

D(1)

0

2

1

Notes

An MPI type constructor, such as MPI_TYPE_CONTIGUOUS, creates a data type

object within MPI and gives a handle for that object to the caller. This handle

represents one reference to the object. IN PE MPI, the MPI data types obtained

with calls to MPI_TYPE_GET_CONTENTS are new handles for the existing data

type objects. The number of handles (references) given to the user is tracked by a

reference counter in the object. MPI cannot discard a data type object unless

MPI_TYPE_FREE has been called on every handle the user has obtained.

The use of reference-counted objects is encouraged, but not mandated, by the MPI

standard. Another MPI implementation may create new objects instead. The user

MPI_TYPE_GET_CONTENTS

Chapter 3. MPI subroutines and functions 503

should be aware of a side effect of the reference count approach. Suppose aatype

was created by a call to MPI_TYPE_VECTOR and used so that a later call to

MPI_TYPE_GET_CONTENTS returns its handle in bbtype. Because both handles

identify the same data type object, attribute changes made with either handle are

changes in the single object. That object will exist at least until MPI_TYPE_FREE

has been called on both aatype and bbtype. Freeing either handle alone will leave

the object intact and the other handle will remain valid.

Errors

Invalid datatype

Predefined datatype

Maximum array size is not big enough

MPI already finalized

MPI not initialized

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_ENVELOPE

MPI_TYPE_GET_CONTENTS

504 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_ENVELOPE, MPI_Type_get_envelope

Purpose

Determines the constructor that was used to create the data type and the amount of

data that will be returned by a call to MPI_TYPE_GET_CONTENTS for the same

data type.

C synopsis

#include <mpi.h>

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,

 int *num_addresses, int *num_datatypes, int *combiner);

C++ synopsis

#include mpi.h

void MPI::Datatype::Get_envelope(int& num_integers, int& num_addresses,

 int& num_datatypes, int& combiner)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_GET_ENVELOPE(INTEGER DATATYPE, INTEGER NUM_INTEGERS,

 INTEGER NUM_ADDRESSES, INTEGER NUM_DATATYPES, INTEGER COMBINER,

 INTEGER IERROR)

Description

MPI_TYPE_GET_ENVELOPE provides information about an unknown data type

that will allow it to be decoded if appropriate. This includes identifying the combiner

used to create the unknown type and the sizes that the arrays must be if

MPI_TYPE_GET_CONTENTS is to be called. MPI_TYPE_GET_ENVELOPE is also

used to determine whether a data type handle returned by

MPI_TYPE_GET_CONTENTS or MPI_FILE_GET_VIEW is for a predefined, named

data type. When the combiner is MPI_COMBINER_NAMED, it is an error to call

MPI_TYPE_GET_CONTENTS or MPI_TYPE_FREE with the data type.

Parameters

datatype

The data type to access (handle) (IN)

num_integers

The number of input integers used in the call constructing combiner

(non-negative integer) (OUT)

num_addresses

The number of input addresses used in the call constructing combiner

(non-negative integer) (OUT)

num_datatypes

The number of input data types used in the call constructing combiner

(non-negative integer) (OUT)

combiner

The combiner (state) (OUT)

This is a list of the combiners and the calls associated with them.

Combiner What it represents

MPI_TYPE_GET_ENVELOPE

Chapter 3. MPI subroutines and functions 505

MPI_COMBINER_NAMED A named, predefined data type

MPI_COMBINER_DUP MPI_TYPE_DUP

MPI_COMBINER_CONTIGUOUS

MPI_TYPE_CONTIGUOUS

MPI_COMBINER_VECTOR MPI_TYPE_VECTOR

MPI_COMBINER_HVECTOR MPI_TYPE_HVECTOR from C and in some cases

FORTRAN or MPI_TYPE_CREATE_HVECTOR.

MPI_COMBINER_HVECTOR_INTEGER

MPI_TYPE_HVECTOR from FORTRAN

MPI_COMBINER_INDEXED MPI_TYPE_INDEXED

MPI_COMBINER_HINDEXED MPI_TYPE_HINDEXED from C and in some cases

FORTRAN or MPI_TYPE_CREATE_HINDEXED.

MPI_COMBINER_HINDEXED_INTEGER

MPI_TYPE_HINDEXED from FORTRAN

MPI_COMBINER_INDEXED_BLOCK

MPI_TYPE_CREATE_INDEXED_BLOCK

MPI_COMBINER_STRUCT MPI_TYPE_STRUCT from C and in some cases

FORTRAN or MPI_TYPE_CREATE_STRUCT

MPI_COMBINER_STRUCT_INTEGER

MPI_TYPE_STRUCT from FORTRAN

MPI_COMBINER_SUBARRAY MPI_TYPE_CREATE_SUBARRAY

MPI_COMBINER_DARRAY MPI_TYPE_CREATE_DARRAY

MPI_COMBINER_F90_REAL MPI_TYPE_CREATE_F90_REAL

MPI_COMBINER_F90_COMPLEX

MPI_TYPE_CREATE_F90_COMPLEX

MPI_COMBINER_F90_INTEGER

MPI_TYPE_CREATE_F90_INTEGER

MPI_COMBINER_RESIZED MPI_TYPE_CREATE_RESIZED

Errors

Invalid datatype

MPI already finalized

MPI not initialized

Related information

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

MPI_TYPE_GET_ENVELOPE

506 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_EXTENT, MPI_Type_get_extent

Purpose

Returns the lower bound and the extent of any defined data type.

C synopsis

#include <mpi.h>

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb, MPI_Aint *extent);

C++ synopsis

#include mpi.h

void MPI::Datatype::Get_extent(MPI::Aint& lb, MPI::Aint& extent)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_GET_EXTENT(INTEGER DATATYPE, INTEGER(KIND=MPI_ADDRESS_KIND) LB,

 INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, INTEGER IERROR)

Description

This subroutine returns the lower bound and the extent of a data type. By default,

the extent of a data type is the span from the first byte to the last byte occupied by

entries in this data type and rounded up to satisfy alignment requirements.

Parameters

datatype

The data type (handle) (IN)

lb The lower bound of the data type (integer) (OUT)

extent

The extent of the data type (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Rounding for alignment is not done when MPI_UB is used to define the data type.

Types defined with MPI_LB, MP_UB, or with any type that itself contains MPI_LB or

MPI_UB may return an extent that is not directly related to the layout of data in

memory. Refer to “MPI_TYPE_STRUCT, MPI_Type_struct” on page 527 or

“MPI_TYPE_CREATE_STRUCT, MPI_Type_create_struct” on page 487 for more

information on MPI_LB and MPI_UB.

MPI_TYPE_CREATE_RESIZED can also alter default extent.

In FORTRAN, MPI_TYPE_GET_EXTENT accepts arguments of type

INTEGER(KIND=MPI_ADDRESS_KIND) for lb and extent arguments where type

MPI_Aint is used in C.

If FORTRAN 64-bit applications must be written to be portable to systems that do

not support FORTRAN 90 KIND declarations, it is also correct to declare the

(KIND=MPI_ADDRESS_KIND) arguments as INTEGER*8. The KIND format has the

advantage of allowing the same source code to compile for either 32-bit or 64-bit

MPI_TYPE_GET_EXTENT

Chapter 3. MPI subroutines and functions 507

processing. The MPI_TYPE_xxxx binding is retained to support old codes but any

new code, whether C or FORTRAN should use MPI_TYPE_CREATE_xxxxx.

Note that the MPI-1 routines that use a FORTRAN INTEGER where C bindings

specify MPI_Aint will work correctly as long as the values they represent fit in a

32-bit signed integer. It can be difficult to predict reliably when values will remain in

range and the loss of high-order bits when overflow does occur will not raise an

MPI error, so this may lead to obscure application failures.

Errors

Fatal errors:

Invalid datatype

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_SIZE

MPI_TYPE_GET_EXTENT

508 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_NAME, MPI_Type_get_name

Purpose

Returns the name that was last associated with a data type.

C synopsis

#include <mpi.h>

int MPI_Type_get_name(MPI_Datatype type, char *type_name, int *resultlen);

C++ synopsis

#include mpi.h

void MPI::Datatype::Get_name(char* type_name, int& resultlen)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_GET_NAME(INTEGER TYPE, CHARACTER*(*) TYPE_NAME, INTEGER RESULTLEN,

 INTEGER IERROR)

Description

This subroutine returns the name that was last associated with the specified data

type. The name can be set and retrieved from any language. The same name is

returned independent of the language used. The name should be allocated so it can

hold a resulting string that is the length of MPI_MAX_OBJECT_NAME. For PE MPI,

the value of MPI_MAX_OBJECT_NAME is 256. MPI_TYPE_GET_NAME returns a

copy of the set name in type_name.

Parameters

type

The data type with the name to be returned (handle) (IN)

type_name

The name previously stored on the data type, or an empty string if no such

name exists (string) (OUT)

resultlen

The length of the returned name (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

If you did not associate a name with a data type, or if an error occurs,

MPI_TYPE_GET_NAME returns an empty string (all spaces in FORTRAN or ″″ in C

and C++). Named predefined data types have the default names of the data type

name. For example, MPI_WCHAR has the default name of MPI_WCHAR.

It is safe simply to print the string returned by MPI_TYPE_GET_NAME, as it is

always a valid string even if there was no name.

Errors

Fatal errors:

Invalid datatype

MPI_TYPE_GET_NAME

Chapter 3. MPI subroutines and functions 509

MPI already finalized

MPI not initialized

Related information

 MPI_TYPE_DUP

 MPI_TYPE_SET_NAME

MPI_TYPE_GET_NAME

510 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_TRUE_EXTENT, MPI_Type_get_true_extent

Purpose

Returns the true extent of any defined data type.

C synopsis

#include <mpi.h>

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,

 MPI_Aint *true_extent);

C++ synopsis

#include mpi.h

void MPI::Datatype::Get_true_extent(MPI::Aint& true_lb,

 MPI::Aint& true_extent)

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_GET_TRUE_EXTENT(INTEGER DATATYPE, INTEGER TRUE_LB,

 INTEGER(KIND=MPI_ADDRESS_KIND) TRUE_EXTENT,

 INTEGER IERROR)

Description

This subroutine returns the true extent of a data type. true_lb returns the offset of

the lowest unit of storage that is addressed by the data type. true_extent returns the

true size of the data type. The true extent of a data type is the minimum number of

bytes of memory that are needed to hold it (the data type), uncompressed.

Parameters

datatype

The data type about which to get information (handle) (IN)

true_lb

The true lower bound of the data type (integer) (OUT)

extent

The true size of the data type (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

All other MPI subroutines that refer to ″extent″ use that term to identify the stride at

which the data type is applied when used more that once. That stride is often the

same as the footprint in address space, but because MPI allows default extent

(stride) to be modified, a data type’s ″extent″ and ″true extent″ may not always be

the same.

The true extent tells you how much space is required in the address space to store

one instance of the data type. However, for two or more instances, multiplying true

extent by the number of instances is not useful. To determine the footprint in

address space for two or more instances of the data type, you must also use

MPI_TYPE_GET_EXTENT to learn the stride.

MPI_TYPE_GET_TRUE_EXTENT

Chapter 3. MPI subroutines and functions 511

Errors

Fatal errors:

Invalid datatype

MPI not initialized

MPI already finalized

MPI_TYPE_GET_TRUE_EXTENT

512 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_HINDEXED, MPI_Type_hindexed

Purpose

Returns a new data type that represents count blocks. Each block is defined by an

entry in array_of_blocklengths and array_of_displacements. Displacements are

expressed in bytes.

C synopsis

#include <mpi.h>

int MPI_Type_hindexed(int count,int *array_of_blocklengths,

 MPI_Aint *array_of_displacements,

 MPI_Datatype oldtype,MPI_Datatype *newtype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_HINDEXED(INTEGER COUNT,INTEGER ARRAY_OF_BLOCKLENGTHS(*),

 INTEGER ARRAY_OF DISPLACEMENTS(*),INTEGER OLDTYPE,

 INTEGER NEWTYPE,INTEGER IERROR)

Description

This subroutine returns a new data type that represents count blocks. Each is

defined by an entry in array_of_blocklengths and array_of_displacements.

Displacements are expressed in bytes rather than in multiples of the oldtype extent

as in MPI_TYPE_INDEXED.

Parameters

count

The number of blocks and the number of entries in array_of_displacements and

array_of_blocklengths (non-negative integer) (IN)

array_of_blocklengths

The number of instances of oldtype for each block (array of non-negative

integers) (IN)

array_of_displacements

A byte displacement for each block (array of integer) (IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_TYPE_CREATE_HINDEXED supersedes MPI_TYPE_HINDEXED.

For FORTRAN 64-bit codes, an INTEGER may not be enough to represent a

displacement. When displacements are known to be small enough, this subroutine

remains usable at your own risk. New codes should use

MPI_TYPE_CREATE_HINDEXED.

MPI_TYPE_HINDEXED

Chapter 3. MPI subroutines and functions 513

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

Errors

Invalid count

count < 0

Invalid blocklength

blocklength [i] < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_INDEXED

MPI_TYPE_HINDEXED

514 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_HVECTOR, MPI_Type_hvector

Purpose

Returns a new data type that represents equally-spaced blocks. The spacing

between the start of each block is given in bytes.

C synopsis

#include <mpi.h>

int MPI_Type_hvector(int count,int blocklength,MPI_Aint stride,

 MPI_Datatype oldtype,MPI_Datatype *newtype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_HVECTOR(INTEGER COUNT,INTEGER BLOCKLENGTH,INTEGER STRIDE,

 INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

Description

This subroutine returns a new data type that represents count equally-spaced

blocks. Each block is a concatenation of blocklength instances of oldtype. The

origins of the blocks are spaced stride units apart where the counting unit is one

byte.

Parameters

count

The number of blocks (non-negative integer) (IN)

blocklength

The number of oldtype instances in each block (non-negative integer) (IN)

stride

An integer specifying the number of bytes between start of each block. (IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_TYPE_CREATE_HVECTOR supersedes MPI_TYPE_HVECTOR.

For FORTRAN 64-bit codes, an INTEGER may not be enough to represent the

stride. When the stride is known to be small enough, this subroutine remains usable

at your own risk. New codes should always use MPI_TYPE_CREATE_HVECTOR.

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

Errors

Invalid count

count < 0

MPI_TYPE_HVECTOR

Chapter 3. MPI subroutines and functions 515

Invalid blocklength

blocklength < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_VECTOR

MPI_TYPE_HVECTOR

516 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_INDEXED, MPI_Type_indexed

Purpose

Returns a new data type that represents count blocks. Each block is defined by an

entry in array_of_blocklengths and array_of_displacements. Displacements are

expressed in units of extent(oldtype).

C synopsis

#include <mpi.h>

int MPI_Type_indexed(int count,int *array_of_blocklengths,

 int *array_of_displacements,

 MPI_Datatype oldtype,MPI_datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_indexed(int count,

 const int array_of_blocklengths[],

 const int array_of_displacements[])

 const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_INDEXED(INTEGER COUNT,INTEGER ARRAY_OF_BLOCKLENGTHS(*),

 INTEGER ARRAY_OF DISPLACEMENTS(*),INTEGER OLDTYPE,

 INTEGER NEWTYPE,INTEGER IERROR)

Description

This subroutine returns a new data type that represents count blocks. Each is

defined by an entry in array_of_blocklengths and array_of_displacements.

Displacements are expressed in units of extent(oldtype).

Parameters

count

The number of blocks and the number of entries in array_of_displacements and

array_of_blocklengths (non-negative integer) (IN)

array_of_blocklengths

The number of instances of oldtype in each block (array of non-negative

integers) (IN)

array_of_displacements

The displacement of each block in units of extent(oldtype) (array of integer)

(IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

MPI_TYPE_INDEXED

Chapter 3. MPI subroutines and functions 517

Errors

Invalid count

count < 0

Invalid count

blocklength [i] < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_HINDEXED

MPI_TYPE_INDEXED

518 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_LB, MPI_Type_lb

Purpose

Returns the lower bound of a data type.

C synopsis

#include <mpi.h>

int MPI_Type_lb(MPI_Datatype datatype,MPI_Aint *displacement);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_LB(INTEGER DATATYPE,INTEGER DISPLACEMENT,INTEGER IERROR)

Description

This subroutine returns the lower bound of a specific data type.

In general, the lower bound is the offset of the lowest address byte in the data type.

Data type constructors with explicit MPI_LB and vector constructors with negative

stride can produce lb < 0. The lower bound cannot be greater than the upper

bound. For a type with MPI_LB in its ancestry, the value returned by MPI_TYPE_LB

may not be related to the displacement of the lowest address byte. Refer to

“MPI_TYPE_STRUCT, MPI_Type_struct” on page 527 for more information on

MPI_LB and MPI_UB.

Parameters

datatype

The data type (handle) (IN)

displacement

The displacement of lower bound from the origin in bytes (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_TYPE_GET_EXTENT supersedes MPI_TYPE_LB.

For FORTRAN 64-bit codes, an INTEGER may not be enough to represent the

lower bound. When the lower bound is known to be representable by an INTEGER,

this subroutine remains usable at your own risk. New codes should always use

MPI_TYPE_GET_EXTENT.

Errors

Invalid datatype

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_STRUCT

 MPI_TYPE_UB

MPI_TYPE_LB

Chapter 3. MPI subroutines and functions 519

MPI_TYPE_MATCH_SIZE, MPI_Type_match_size

Purpose

Returns a reference (handle) to one of the predefined named data types, not a

duplicate.

C synopsis

#include <mpi.h>

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *type);

C++ synopsis

#include mpi.h

static MPI::Datatype MPI::Datatype::Match_size(int typeclass, int size);

FORTRAN synopsis

use mpi

MPI_TYPE_MATCH_SIZE(INTEGER TYPECLASS, INTEGER SIZE, INTEGER TYPE, INTEGER IERROR)

Description

This subroutine returns an MPI data type matching a local variable of type

(typeclass, size). The value of typeclass is one of these: MPI_TYPECLASS_REAL,

MPI_TYPECLASS_INTEGER, or MPI_TYPECLASS_COMPLEX, corresponding to

the desired type class. This type cannot be freed. MPI_TYPE_MATCH_SIZE can be

used to obtain a size-specific type that matches a FORTRAN numeric intrinsic type

by first calling MPI_SIZEOF in order to compute the variable size, and then calling

MPI_TYPE_MATCH_SIZE to find a suitable data type. In C and C++, you can use

the C function sizeof(), instead of MPI_SIZEOF. In addition, for variables of default

kind, the variable’s size can be computed by a call to MPI_TYPE_GET_EXTENT, if

the typeclass is known. It is erroneous to specify a size not supported by the

compiler.

Parameters

typeclass

The generic type specifier (integer) (IN)

size

The size, in bytes, of the representation (integer) (IN)

type

The data type with the correct type and size (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Errors

Fatal errors:

MPI already finalized

MPI not initialized

No matching MPI intrinsic type

MPI_TYPE_MATCH_SIZE

520 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_SIZEOF

 MPI_TYPE_GET_EXTENT

MPI_TYPE_MATCH_SIZE

Chapter 3. MPI subroutines and functions 521

MPI_TYPE_SET_ATTR, MPI_Type_set_attr

Purpose

Attaches the data type attribute value to the data type and associates it with the

key.

C synopsis

#include <mpi.h>

int MPI_Type_set_attr (MPI_Datatype type, int type_keyval, void *attribute_val);

C++ synopsis

#include mpi.h

void MPI::Datatype::Set_attr(int type_keyval, const void* attribute_val);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_SET_ATTR(INTEGER TYPE, INTEGER TYPE_KEYVAL,

 INTEGER ATTRIBUTE_VAL, INTEGER IERROR)

Description

This subroutine stores the attribute attribute_val for subsequent retrieval by

MPI_TYPE_GET_ATTR. If an attribute already exists for type_keyval on type, the

attribute delete function is called before the new attribute is stored.

Parameters

type

The data type to which the attribute will be attached (handle) (INOUT)

type_keyval

The key value (integer) (IN)

attribute_val

The attribute value (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The implementation of MPI_TYPE_SET_ATTR and MPI_TYPE_GET_ATTR involves

saving a single word of information in the data type. The languages C and

FORTRAN have different approaches to using this capability:

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_TYPE_SET_ATTR, you allocate some storage

for the attribute structure and then call MPI_TYPE_SET_ATTR to record the

address of this structure. You must make sure that the structure remains intact

as long as it may be useful. As the programmer, you will also declare a variable

of type “pointer to attribute structure” and pass the address of this variable when

calling MPI_TYPE_GET_ATTR. Both MPI_TYPE_SET_ATTR and

MPI_TYPE_GET_ATTR take a void* parameter, but this does not imply that the

same parameter is passed to either one.

In FORTRAN:

MPI_TYPE_SET_ATTR records an address-size integer and

MPI_TYPE_SET_ATTR

522 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_GET_ATTR returns the address-size integer. As the programmer,

you can choose to encode all attribute information in this integer or maintain

some kind of database in which the integer can index. Either of these

approaches will port to other MPI implementations.

 Many of the FORTRAN compilers include an additional feature that allows some

of the same functions a C programmer would use. These compilers support the

POINTER type, often referred to as a Cray pointer. XL FORTRAN is one of the

compilers that supports the POINTER type. For more information, see IBM XL

FORTRAN Compiler for AIX Reference

Errors

Fatal errors:

Invalid datatype (MPI_ERR_TYPE)

Null datatype (MPI_ERR_TYPE)

Invalid attribute key (MPI_ERR_ARG) type_keyval is undefined

Predefined attribute key (MPI_ERR_ARG)

Wrong keytype (MPI_ERR_ARG) attribute key is not a datatype key

MPI not initialized (MPI_ERR_OTHER)

MPI already finalized (MPI_ERR_OTHER)

Related information

 MPI_TYPE_DELETE_ATTR

 MPI_TYPE_GET_ATTR

MPI_TYPE_SET_ATTR

Chapter 3. MPI subroutines and functions 523

MPI_TYPE_SET_NAME, MPI_Type_set_name

Purpose

Associates a name string with a data type.

C synopsis

#include <mpi.h>

int MPI_Type_set_name (MPI_Datatype type, char *type_name);

C++ synopsis

#include mpi.h

void MPI::Datatype::Set_name(const char* type_name);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_SET_NAME(INTEGER TYPE, CHARACTER*(*) TYPE_NAME, INTEGER IERROR)

Description

This subroutine lets you associate a name string with a data type. Because the

purpose of this name is as an identifier, when the data type is copied or duplicated,

the name does not propagate.

MPI_TYPE_SET_NAME is a local (non-collective) operation, which affects only the

name of the data type as specified in the task that made the

MPI_TYPE_SET_NAME call. There is no requirement that the same (or any) name

be assigned to a data type in every task where that data type exists. However, to

avoid confusion, it is a good idea to give the same name to a data type in all of the

tasks where it exists.

Parameters

type

The data type with the identifier to be set (handle) (INOUT)

type_name

The character string that is saved as the data type’s name (string) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The length of the name that can be stored is limited to the value of

MPI_MAX_OBJECT_NAME in FORTRAN and MPI_MAX_OBJECT_NAME-1 in C

and C++ to allow for the null terminator. Attempts to use a longer name will result in

truncation of the name. For PE MPI, the value of MPI_MAX_OBJECT_NAME is

256.

Under circumstances of storage exhaustion, an attempt to use a name of any

length could fail, therefore the value of MPI_MAX_OBJECT_NAME should be

viewed only as a strict upper bound on the name length, not a guarantee that

setting names of less than this length will always succeed.

Associating a name with a data type has no effect on the semantics of an MPI

program, and (necessarily) increases the storage requirement of the program,

MPI_TYPE_SET_NAME

524 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

because the names must be saved. Therefore, there is no requirement that you use

this subroutine to associate names with data types. However, debugging and

profiling MPI applications can be made easier if names are associated with data

types, as the debugger or profiler should then be able to present information in a

less cryptic manner.

Errors

Fatal errors:

Invalid datatype

MPI already finalized

MPI not initialized

Related information

 MPI_TYPE_DUP

 MPI_TYPE_GET_NAME

MPI_TYPE_SET_NAME

Chapter 3. MPI subroutines and functions 525

MPI_TYPE_SIZE, MPI_Type_size

Purpose

Returns the number of bytes represented by any defined data type.

C synopsis

#include <mpi.h>

int MPI_Type_size(MPI_Datatype datatype,int *size);

C++ synopsis

#include mpi.h

int MPI::Datatype::Get_size() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_SIZE(INTEGER DATATYPE,INTEGER SIZE,INTEGER IERROR)

Description

This subroutine returns the total number of bytes in the type signature associated

with datatype. Entries with multiple occurrences in the data type are counted.

Parameters

datatype

The data type (handle) (IN)

size

The data type size (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

This function must be used with some care in 64-bit applications because size is an

integer and could be subject to overflow.

Errors

Invalid datatype

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_EXTENT

MPI_TYPE_SIZE

526 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_STRUCT, MPI_Type_struct

Purpose

Returns a new data type that represents count blocks. Each is defined by an entry

in array_of_blocklengths, array_of_displacements and array_of_types.

Displacements are expressed in bytes.

C synopsis

#include <mpi.h>

int MPI_Type_struct(int count,int *array_of_blocklengths,

 MPI_Aint *array_of_displacements,MPI_Datatype *array_of_types,

 MPI_datatype *newtype);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_STRUCT(INTEGER COUNT,INTEGER ARRAY_OF_BLOCKLENGTHS(*),

 INTEGER ARRAY_OF DISPLACEMENTS(*),INTEGER ARRAY_OF_TYPES(*),

 INTEGER NEWTYPE,INTEGER IERROR)

Description

This subroutine returns a new data type that represents count blocks. Each is

defined by an entry in array_of_blocklengths, array_of_displacements and

array_of_types. Displacements are expressed in bytes.

MPI_TYPE_STRUCT is the most general type of constructor. It allows each block to

consist of replications of different data types. It is the only constructor that allows

MPI pseudo types MPI_LB and MPI_UB. Without these pseudo types, the extent of

a data type is the range from the first byte to the last byte rounded up as needed to

meet boundary requirements. For example, if a type is made of an integer followed

by two characters, it will still have an extent of 8 because it is padded to meet the

boundary constraints of an integer. This is intended to match the behavior of a

compiler defining an array of such structures.

Because there may be cases in which this default behavior is not correct, MPI

provides a means to set explicit upper and lower bounds which may not be directly

related to the lowest and highest displacement data type. When the pseudo type

MPI_UB is used, the upper bound will be the value specified as the displacement of

the MPI_UB block. No rounding for alignment is done. MPI_LB can be used to set

an explicit lower bound but its use does not suppress rounding. When MPI_UB is

not used, the upper bound of the data type is adjusted to make the extent a

multiple of the type’s most boundary constrained component.

The marker placed by a MPI_LB or MPI_UB is sticky. For example, suppose type

A is defined with a MPI_UB at 100. Type B is defined with a type A at 0 and a

MPI_UB at 50. In effect, type B has received a MPI_UB at 50 and an inherited

MPI_UB at 100. Because the inherited MPI_UB is higher, it is kept in the type B

definition and the MPI_UB explicitly placed at 50 is discarded.

Parameters

count

An integer specifying the number of blocks. It is also the number of entries in

arrays array_of_types, array_of_displacements and array_of_blocklengths. (IN)

MPI_TYPE_STRUCT

Chapter 3. MPI subroutines and functions 527

array_of_blocklengths

The number of elements in each block (array of integer). That is,

array_of_blocklengths(i) specifies the number of instances of type

array_of_types(i) in block(i). (IN)

array_of_displacements

The byte displacement of each block (array of integer) (IN)

array_of_types

The data type comprising each block. That is, block(i) is made of a

concatenation of type array_of_types(i). (array of handles to data type objects)

(IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_TYPE_CREATE_STRUCT supersedes MPI_TYPE_STRUCT.

For FORTRAN 64-bit codes, an array of integer may not be enough to represent

array_of_displacements. When array_of_displacements is known to be

representable by an array of integer, this subroutine remains usable at your own

risk. New codes should always use MPI_TYPE_CREATE_STRUCT.

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

Errors

Invalid count

count < 0

Invalid blocklength

blocklength[i] < 0

Undefined oldtype in array_of_types

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

MPI_TYPE_STRUCT

528 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_UB, MPI_Type_ub

Purpose

Returns the upper bound of a data type.

C synopsis

#include <mpi.h>

int MPI_Type_ub(MPI_Datatype datatype,MPI_Aint *displacement);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_UB(INTEGER DATATYPE,INTEGER DISPLACEMENT,

 INTEGER IERROR)

Description

This subroutine returns the upper bound of a specific data type.

The upper bound is the displacement you use in locating the origin byte of the next

instance of datatype for operations that use count and datatype. In the normal case,

ub represents the displacement of the highest address byte of the data type + e

(where e >= 0 and results in (ub − lb) being a multiple of the boundary requirement

for the most boundary constrained type in the data type). If MPI_UB is used in a

type constructor, no alignment adjustment is done so ub is exactly as you set it.

For a type with MPI_UB in its ancestry, the value returned by MPI_TYPE_UB may

not be related to the displacement of the highest address byte (with rounding).

Refer to “MPI_TYPE_STRUCT, MPI_Type_struct” on page 527 for more information

on MPI_LB and MPI_UB.

Parameters

datatype

The data type (handle) (IN)

displacement

The displacement of the upper bound from the origin, in bytes (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_TYPE_GET_EXTENT supersedes MPI_TYPE_UB.

For FORTRAN 64-bit codes, an INTEGER may not be enough to represent the

upper bound. When the upper bound is known to be representable by an

INTEGER, this subroutine remains usable at your own risk. New codes should

always use MPI_TYPE_GET_EXTENT.

Errors

Invalid datatype

MPI not initialized

MPI already finalized

MPI_TYPE_UB

Chapter 3. MPI subroutines and functions 529

Related information

 MPI_TYPE_LB

 MPI_TYPE_STRUCT

MPI_TYPE_UB

530 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_TYPE_VECTOR, MPI_Type_vector

Purpose

Returns a new data type that represents equally spaced blocks. The spacing

between the start of each block is given in units of extent (oldtype).

C synopsis

#include <mpi.h>

int MPI_Type_vector(int count,int blocklength,int stride,

 MPI_Datatype oldtype,MPI_Datatype *newtype);

C++ synopsis

#include mpi.h

MPI::Datatype MPI::Datatype::Create_vector(int count, int blocklength,

 int stride) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_TYPE_VECTOR(INTEGER COUNT,INTEGER BLOCKLENGTH,INTEGER STRIDE,

 INTEGER OLDTYPE,INTEGER NEWTYPE,INTEGER IERROR)

Description

This subroutine returns a new data type that represents count equally spaced

blocks. Each block is a a concatenation of blocklength instances of oldtype. The

origins of the blocks are spaced stride units apart, where the counting unit is

extent(oldtype). That is, from one origin to the next in bytes = stride * extent

(oldtype).

Parameters

count

The number of blocks (non-negative integer) (IN)

blocklength

The number of oldtype instances in each block (non-negative integer) (IN)

stride

The number of units between the start of each block (integer) (IN)

oldtype

The old data type (handle) (IN)

newtype

The new data type (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

newtype must be committed using MPI_TYPE_COMMIT before being used for

communication.

Errors

Invalid count

count < 0

MPI_TYPE_VECTOR

Chapter 3. MPI subroutines and functions 531

Invalid blocklength

blocklength < 0

Undefined oldtype

Oldtype is MPI_LB, MPI_UB or MPI_PACKED

MPI not initialized

MPI already finalized

Related information

 MPI_TYPE_COMMIT

 MPI_TYPE_FREE

 MPI_TYPE_GET_CONTENTS

 MPI_TYPE_GET_ENVELOPE

 MPI_TYPE_HVECTOR

MPI_TYPE_VECTOR

532 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_UNPACK, MPI_Unpack

Purpose

Unpacks the message into the specified receive buffer from the specified packed

buffer.

C synopsis

#include <mpi.h>

int MPI_Unpack(void* inbuf,int insize,int *position,void *outbuf,

 int outcount,MPI_Datatype datatype,MPI_Comm comm);

C++ synopsis

#include mpi.h

void MPI::Datatype::Unpack(const void* inbuf, int insize, void* outbuf,

 int outcount, int& position,

 const MPI::Comm& comm) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_UNPACK(CHOICE INBUF,INTEGER INSIZE,INTEGER POSITION,CHOICE OUTBUF,

 INTEGER OUTCOUNT,INTEGER DATATYPE,INTEGER COMM,INTEGER IERROR)

Description

This subroutine unpacks the message specified by outbuf, outcount, and datatype

from the buffer space specified by inbuf and insize. The output buffer is any receive

buffer allowed in MPI_RECV. The input buffer is any contiguous storage space

containing insize bytes and starting at address inbuf.

The input value of position is the beginning offset in the input buffer for the data to

be unpacked. The output value of position is the offset in the input buffer following

the data already unpacked. That is, the starting point for another call to

MPI_UNPACK. comm is the communicator that was used to receive the packed

message.

Parameters

inbuf

The input buffer start (choice) (IN)

insize

An integer specifying the size of input buffer in bytes (IN)

position

An integer specifying the current packed buffer offset in bytes (INOUT)

outbuf

The output buffer start (choice) (OUT)

outcount

An integer specifying the number of instances of datatype to be unpacked (IN)

datatype

The data type of each output data item (handle) (IN)

comm

The communicator for the packed message (handle) (IN)

MPI_UNPACK

Chapter 3. MPI subroutines and functions 533

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In MPI_UNPACK, the outcount argument specifies the actual number of items to be

unpacked. The size of the corresponding message is the increment in position.

Errors

Invalid outcount

outcount < 0

Invalid datatype

Type is not committed

Invalid communicator

Inbuf too small

Negative length or position for buffer

outsize < 0 or position < 0

MPI not initialized

MPI already finalized

Related information

 MPI_PACK

MPI_UNPACK

534 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_UNPACK_EXTERNAL, MPI_Unpack_external

Purpose

Unpacks the message into the specified receive buffer from the specified packed

buffer, using the external32 data format.

C synopsis

#include <mpi.h>

int MPI_Unpack_external(char *datarep, void *inbuf, MPI_Aint insize,

 MPI_Aint *position, void *outbuf, int outcount,

 MPI_Datatype datatype);

C++ synopsis

#include mpi.h

void MPI::Datatype::Unpack_external(const char* datarep, const void* inbuf,

 MPI::Aint insize, MPI::Aint& position,

 void* outbuf, int outcount) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_UNPACK_EXTERNAL(CHARACTER*(*) DATAREP, CHOICE INBUF(*),

 INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE,

 INTEGER(KIND=MPI_ADDRESS_KIND) POSITION,

 CHOICE OUTBUF(*), INTEGER OUTCOUNT, INTEGER DATATYPE, INTEGER IERROR)

Description

This subroutine unpacks the message specified by outbuf, outcount, and datatype

from the buffer space specified by inbuf and insize. The output buffer is any receive

buffer allowed in MPI_RECV. The input buffer is any contiguous storage space

containing insize bytes and starting at address inbuf.

The input value of position is the beginning offset in the input buffer for the data to

be unpacked. The output value of position is the offset in the input buffer following

the data already unpacked. That is, the starting point for another call to

MPI_UNPACK_EXTERNAL.

Parameters

datarep

The data representation (string) (IN)

inbuf

The input buffer start (choice) (IN)

insize

An integer specifying the size of input buffer in bytes (IN)

position

An integer specifying the current position in the buffer, in bytes (INOUT)

outbuf

The output buffer start (choice) (OUT)

outcount

An integer specifying the number of output data items (IN)

datatype

The data type of each output data item (handle) (IN)

MPI_UNPACK_EXTERNAL

Chapter 3. MPI subroutines and functions 535

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In MPI_UNPACK_EXTERNAL, the outcount argument specifies the actual number

of items to be unpacked. The size of the corresponding message is the increment

in position.

Errors

Invalid outcount

outcount < 0

Invalid datarep

Invalid datatype

Type is not committed

Inbuf too small

Negative length or position for buffer

outsize < 0 or position < 0

MPI not initialized

MPI already finalized

Related information

 MPI_PACK_EXTERNAL

MPI_UNPACK_EXTERNAL

536 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WAIT, MPI_Wait

Purpose

Waits for a nonblocking operation to complete.

C synopsis

#include <mpi.h>

int MPI_Wait(MPI_Request *request,MPI_Status *status);

C++ synopsis

#include mpi.h

void MPI::Request::Wait();

#include mpi.h

void MPI::Request::Wait(MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WAIT(INTEGER REQUEST,INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

MPI_WAIT returns after the operation identified by request completes. If the object

associated with request was created by a nonblocking operation, the object is

deallocated and request is set to MPI_REQUEST_NULL. MPI_WAIT is a nonlocal

operation.

You can call MPI_WAIT with a null or inactive request argument. The operation

returns immediately. The status argument returns tag = MPI_ANY_TAG, source =

MPI_ANY_SOURCE. The status argument is also internally configured so that calls

to MPI_GET_COUNT and MPI_GET_ELEMENTS return count = 0. This is called an

empty status.

Information on the completed operation is found in status. You can query the status

object for a send or receive operation with a call to MPI_TEST_CANCELLED. For

receive operations, you can also retrieve information from status with

MPI_GET_COUNT and MPI_GET_ELEMENTS. If wildcards were used by the

receive for either the source or tag, the actual source and tag can be retrieved by:

In C:

 source = status.MPI_SOURCE

 tag = status.MPI_TAG

In FORTRAN:

 source = status(MPI_SOURCE)

 tag = status(MPI_TAG)

The error field of MPI_Status is never modified. The success or failure is indicated

only by the return code.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

MPI_WAIT

Chapter 3. MPI subroutines and functions 537

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

When you use this subroutine in a threads application, make sure that the wait for a

given request is done on only one thread. The wait does not have to be done on

the thread that created the request. See IBM Parallel Environment: MPI

Programming Guide for more information on programming with MPI in a threads

environment.

Parameters

request

The request to wait for (handle) (INOUT)

status

The status object (Status) (INOUT). Note that in FORTRAN a single status

object is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

Invalid request handle

Truncation occurred

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update (ISEND)

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TEST

 MPI_WAITALL

 MPI_WAITANY

 MPI_WAITSOME

MPI_WAIT

538 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WAITALL, MPI_Waitall

Purpose

Waits for a collection of nonblocking operations to complete.

C synopsis

#include <mpi.h>

int MPI_Waitall(int count,MPI_Request *array_of_requests,

 MPI_Status *array_of_statuses);

C++ synopsis

#include mpi.h

void MPI::Request::Waitall(int count, MPI::Request req_array[]);

#include mpi.h

void MPI::Request::Waitall(int count, MPI::Request req_array[],

 MPI::Status stat_array[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WAITALL(INTEGER COUNT,INTEGER ARRAY_OF_ REQUESTS(*),

 INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),INTEGER IERROR)

Description

This subroutine blocks until all operations associated with active handles in the list

complete, and returns the status of each operation. array_of_requests and array_of

statuses contain count entries.

The ith entry in array_of_statuses is set to the return status of the ith operation.

Requests created by nonblocking operations are deallocated and the corresponding

handles in the array are set to MPI_REQUEST_NULL. If array_of_requests contains

null or inactive handles, MPI_WAITALL sets the status of each one to empty.

MPI_WAITALL(count, array_of_requests, array_of_statuses) has the same effect as

the invocation of MPI_WAIT(array_of_requests[i], array_of_statuses[i]) for i = 0, 1,

..., (count-1), in some arbitrary order. MPI_WAITALL with an array of length one is

equivalent to MPI_WAIT.

The error fields are never modified unless the function gives a return code of

MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is

modified to reflect the result of the corresponding request.

Passing MPI_STATUSES_IGNORE for the array_of statuses argument causes PE

MPI to skip filling in the status fields. By passing this value for array_of statuses,

you can avoid having to allocate a status object array in programs that do not need

to examine the status fields.

When you use this subroutine in a threads application, make sure that the wait for a

given request is done on only one thread. The wait does not have to be done on

the thread that created it. See IBM Parallel Environment: MPI Programming Guide

for more information on programming with MPI in a threads environment.

MPI_WAITALL

Chapter 3. MPI subroutines and functions 539

Parameters

count

The lists length (integer) (IN)

array_of_requests

An array of requests of length count (array of handles) (INOUT)

array_of_statuses

An array of status objects of length count (array of status) (INOUT). Note that in

FORTRAN a status object is itself an array.

IERROR

The FORTRAN return code. It is always the last argument.

Errors

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

Invalid count

count < 0

Invalid request array

Invalid request

Truncation occurred

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update (ISEND)

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TESTALL

 MPI_WAIT

MPI_WAITALL

540 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WAITANY, MPI_Waitany

Purpose

Waits for any single nonblocking operation in the array of requests to complete.

C synopsis

#include <mpi.h>

int MPI_Waitany(int count,MPI_Request *array_of_requests,

 int *index,MPI_Status *status);

C++ synopsis

#include mpi.h

int MPI::Request::Waitany(int count, MPI::Request array[]);

#include mpi.h

int MPI::Request::Waitany(int count, MPI::Request array[],

 MPI::Status& status);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WAITANY(INTEGER COUNT,INTEGER ARRAY_OF_REQUESTS(*),INTEGER INDEX,

 INTEGER STATUS(MPI_STATUS_SIZE),INTEGER IERROR)

Description

This subroutine blocks until one of the operations associated with the active

requests in the array has completed. If more than one operation can complete, one

is arbitrarily chosen. MPI_WAITANY returns in index the index of that request in the

array, and in status the status of the completed operation. When the request is

allocated by a nonblocking operation, it is deallocated and the request handle is set

to MPI_REQUEST_NULL.

The array_of_requests list can contain null or inactive handles. When the list has a

length of zero or all entries are null or inactive, the call returns immediately with

index = MPI_UNDEFINED, and an empty status.

MPI_WAITANY(count, array_of_requests, index, status) has the same effect as the

invocation of MPI_WAIT(array_of_requests[i], status), where i is the value returned

by index. MPI_WAITANY with an array containing one active entry is equivalent to

MPI_WAIT.

Passing MPI_STATUS_IGNORE for the status argument causes PE MPI to skip

filling in the status fields. By passing this value for status, you can avoid having to

allocate a status object in programs that do not need to examine the status fields.

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

When you use this subroutine in a threads application, make sure that the wait for a

given request is done on only one thread. The wait does not have to be done on

the thread that created it. See IBM Parallel Environment: MPI Programming Guide

for more information on programming with MPI in a threads environment.

MPI_WAITANY

Chapter 3. MPI subroutines and functions 541

Parameters

count

The list length (integer) (IN)

array_of_requests

The array of requests (array of handles) (INOUT)

index

The index of the handle for the operation that completed (integer) (OUT)

status

A status object (Status) (INOUT). Note that in FORTRAN a single status object

is an array of integers.

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The array is indexed from 0 in C and from 1 in FORTRAN.

The use of this routine makes the order in which your application completes the

requests nondeterministic. An application that processes messages in whatever

order they complete must not make assumptions about that order. For example, if:

((msgA op msgB) op msgC)

can give a different answer than:

((msgB op msgC) op msgA)

the application must be prepared to accept either answer as correct, and must not

assume a second run of the application will give the same answer.

Errors

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

Invalid count

count < 0

Invalid requests array

Invalid requests

Truncation occurred

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update (ISEND)

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

MPI_WAITANY

542 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

|

|

|

|
|

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TESTANY

 MPI_WAIT

MPI_WAITANY

Chapter 3. MPI subroutines and functions 543

MPI_WAITSOME, MPI_Waitsome

Purpose

Waits for at least one of a list of nonblocking operations to complete.

C synopsis

#include <mpi.h>

int MPI_Waitsome(int incount,MPI_Request *array_of_requests,

 int *outcount,int *array_of_indices,MPI_Status *array_of_statuses);

C++ synopsis

#include mpi.h

int MPI::Request::Waitsome(int incount, MPI::Request req_array[],

 int array_of_indices[]);

#include mpi.h

int MPI::Request::Waitsome(int incount, MPI::Request req_array[],

 int array_of_indices[],

 MPI::Status stat_array[]);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WAITSOME(INTEGER INCOUNT,INTEGER ARRAY_OF_REQUESTS,INTEGER OUTCOUNT,

 INTEGER ARRAY_OF_INDICES(*),INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*),

 INTEGER IERROR)

Description

This subroutine waits for at least one of a list of nonblocking operations associated

with active handles in the list to complete. The number of completed requests from

the list of array_of_requests is returned in outcount. Returns in the first outcount

locations of the array array_of_indices the indices of these operations.

The status for the completed operations is returned in the first outcount locations of

the array array_of_statuses. When a completed request is allocated by a

nonblocking operation, it is deallocated and the associated handle is set to

MPI_REQUEST_NULL.

When the list contains no active handles, then the call returns immediately with

outcount = MPI_UNDEFINED.

When a request for a receive repeatedly appears in a list of requests passed to

MPI_WAITSOME and a matching send was posted, then the receive eventually

succeeds unless the send is satisfied by another receive. This fairness requirement

also applies to send requests and to I/O requests.

The error fields are never modified unless the function gives a return code of

MPI_ERR_IN_STATUS. In which case, the error field of every MPI_Status is

modified to reflect the result of the corresponding request.

Passing MPI_STATUSES_IGNORE for the array_of_statuses argument causes PE

MPI to skip filling in the status fields. By passing this value for array_of_statuses,

you can avoid having to allocate a status object array in programs that do not need

to examine the status fields.

MPI_WAITSOME

544 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

When one of the MPI wait or test calls returns status for a nonblocking operation

request and the corresponding blocking operation does not provide a status

argument, the status from this wait or test call does not contain meaningful source,

tag, or message size information.

When you use this subroutine in a threads application, make sure that the wait for a

given request is done on only one thread. The wait does not have to be done on

the thread that created it. See IBM Parallel Environment: MPI Programming Guide

for more information on programming with MPI in a threads environment.

Parameters

incount

The length of array_of_requests, array_of_indices, and array_of_statuses

(integer) (IN)

array_of_requests

An array of requests (array of handles) (INOUT)

outcount

The number of completed requests (integer) (OUT)

array_of_indices

The array of indices of operations that completed (array of integers) (OUT)

array_of_statuses

The array of status objects for operations that completed (array of status)

(INOUT). Note that in FORTRAN a status object is itself an array.

IERROR

The FORTRAN return code. It is always the last argument.

Notes

In C, the index within the array array_of_requests, is indexed from zero and from

one in FORTRAN.

The use of this routine makes the order in which your application completes the

requests nondeterministic. An application that processes messages in whatever

order they complete must not make assumptions about that order. For example, if:

((msgA op msgB) op msgC)

can give a different answer than:

((msgB op msgC) op msgA)

the application must be prepared to accept either answer as correct, and must not

assume a second run of the application will give the same answer.

Errors

A GRequest free function returned an error

 A GRequest query function returned an error

 Invalid status ignore value

Invalid form of status ignore

Invalid count

count < 0

MPI_WAITSOME

Chapter 3. MPI subroutines and functions 545

|
|
|

|

|

|

|
|

Invalid requests

Invalid index array

Truncation occurred

MPI not initialized

MPI already finalized

Develop mode error if:

Illegal buffer update (ISEND)

Inconsistent datatype (MPE_I collectives)

Inconsistent message length (MPE_I collectives)

Inconsistent op (MPE_I collectives)

Match of blocking and non-blocking collectives (MPE_I collectives)

Related information

 MPI_TESTSOME

 MPI_WAIT

MPI_WAITSOME

546 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_Win_c2f

Purpose

Translates a C window handle into a FORTRAN handle to the same window.

C synopsis

#include <mpi.h>

MPI_Fint MPI_Win_c2f(MPI_Win win);

Description

This function does not have C++ or FORTRAN bindings. MPI_Win_c2f translates a

C window handle into a FORTRAN handle to the same window; it maps a null

handle into a null handle and a non-valid handle into a non-valid handle. The

converted handle is returned as the function’s value. There is no error detection or

return code.

Parameters

win

The window (handle) (IN)

Errors

None.

Related information

 MPI_Win_f2c

MPI_Win_c2f

Chapter 3. MPI subroutines and functions 547

MPI_WIN_CALL_ERRHANDLER, MPI_Win_call_errhandler

Purpose

Calls the error handler assigned to the window with the error code supplied.

C synopsis

#include <mpi.h>

int MPI_Win_call_errhandler (MPI_Win win, int errorcode);

C++ synopsis

#include mpi.h

void MPI::Win::Call_errhandler(int errorcode) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_CALL_ERRHANDLER(INTEGER WIN, INTEGER ERRORCODE, INTEGER IERROR)

Description

This subroutine calls the error handler assigned to the window with the error code

supplied.

Parameters

win

The window with the error handler (handle) (IN)

errorcode

The error code (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_WIN_CALL_ERRHANDLER returns MPI_SUCCESS in C and C++ and the

same value in IERROR if the error handler was successfully called (assuming the

error handler itself is not fatal).

The default error handler for MPI_Win is MPI_ERRORS_ARE_FATAL. Thus, calling

MPI_WIN_CALL_ERRHANDLER will terminate the job if the default error handler

has not been changed for this window. When a predefined error handler is used on

win, the error message printed by PE MPI will indicate the error code that is passed

in. You cannot force PE MPI to issue a specific predefined error by passing its error

code to this subroutine.

Error handlers should not be called recursively with

MPI_WIN_CALL_ERRHANDLER. Doing this can create a situation where an infinite

recursion is created. This can occur if MPI_WIN_CALL_ERRHANDLER is called

inside an error handler.

Error codes and classes are associated with a task, so they can be used in any

error handler. An error handler should be prepared to deal with any error code it is

given. Furthermore, it is good practice to call an error handler only with the

appropriate error codes. For example, window errors would normally be sent to the

window error handler.

MPI_WIN_CALL_ERRHANDLER

548 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Errors

Invalid error code

Invalid window handle

MPI not initialized

MPI already finalized

Related information

 MPI_ERRHANDLER_FREE

 MPI_WIN_CREATE_ERRHANDLER

 MPI_WIN_GET_ERRHANDLER

 MPI_WIN_SET_ERRHANDLER

MPI_WIN_CALL_ERRHANDLER

Chapter 3. MPI subroutines and functions 549

MPI_WIN_COMPLETE, MPI_Win_complete

Purpose

Completes an RMA access epoch on a window object.

C synopsis

#include <mpi.h>

int MPI_Win_complete (MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Complete() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_COMPLETE(INTEGER WIN, INTEGER IERROR)

Description

This subroutine completes an RMA access epoch on win started by a call to

MPI_WIN_START. All RMA communication calls issued on win during this epoch will

have completed at the origin when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin,

but not at the target. A put or accumulate call may not have completed at the target

when it has completed at the origin.

The target must use corresponding MPI_WIN_POST and MPI_WIN_WAIT. It is the

return from MPI_WIN_WAIT at the target that enforces completion at the target.

Parameters

win

The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Errors

Invalid window handle (handle)

No access epoch to terminate

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Related information

 MPI_WIN_POST

 MPI_WIN_START

MPI_WIN_COMPLETE

550 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|

MPI_WIN_TEST

 MPI_WIN_WAIT

MPI_WIN_COMPLETE

Chapter 3. MPI subroutines and functions 551

MPI_WIN_CREATE, MPI_Win_create

Purpose

Allows each task in an intra-communicator group to specify a window in its memory

that is made accessible to accesses by remote tasks.

C synopsis

#include <mpi.h>

int MPI_Win_create (void *base, MPI_Aint size, int disp_unit,

 MPI_Info info, MPI_Comm comm, MPI_Win *win);

C++ synopsis

#include mpi.h

static MPI::Win MPI::Win::Create(const void* base, MPI::Aint size,

 int disp_unit, const MPI::Info& info,

 const MPI::Intracomm& comm);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_CREATE(CHOICE BASE, INTEGER SIZE, INTEGER DISP_UNIT,

 INTEGER INFO, INTEGER COMM, INTEGER WIN, INTEGER IERROR)

Description

This subroutine returns a handle that represents the window set and the group of

tasks that own and access the windows.

This is a collective operation issued by all tasks in the group of comm. It creates a

window object that can be used by these tasks to perform RMA operations.

Each task specifies a buffer of existing memory that it exposes to RMA accesses by

the tasks in the group of comm. The buffer consists of size number of bytes,

starting at address base. A task may elect to expose no memory by specifying a

size value of 0.

The displacement unit argument facilitates address arithmetic in RMA operations.

The target displacement argument of an RMA operation is scaled by the factor

disp_unit specified by the target task, at window creation.

Parameters

base The initial address of the window (choice) (IN)

size The size of the window in bytes (nonnegative integer) (IN)

disp_unit

The local unit size for displacements, in bytes (positive integer) (IN)

info The Info argument (handle) (IN)

comm The communicator (handle) (IN)

win The window object returned by the call (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

MPI_WIN_CREATE

552 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|
|

Notes

Common choices for disp_unit are: 1 (no scaling), and (in C syntax) sizeof(type), for

a window that consists of an array of elements of type type. With the latter choice,

you can use array indices in RMA calls, and have those scaled correctly to byte

displacements, even in a heterogeneous environment.

PE MPI includes support for the IBM_win_cache hint, which specifies the amount of

memory (in kilobytes) reserved for MPI one-sided RMA communication caching at

an origin. Caching occurs whenever several short (in general, those delivering

significantly less than 4 KB of data) RMA communications are initiated at the origin

against a particular target during a single epoch. If n bytes are reserved for this

purpose, the resulting aggregation potential (maximum number of messages to all

targets that may be cached at any given time) is approximately n/24 for a 32-bit

application and n/32 for a 64-bit application. The maximum number of bytes

reserved for caching is limited by the number of tasks in the window multiplied by

24000 for a 32-bit application (or for a 64-bit application, multiplied by 32000). Hint

values that ask for more bytes than these values are effectively truncated.

A hint in MPI is a (key,value) pair put in an Info object. See “MPI_INFO_CREATE,

MPI_Info_create” on page 343. The Info object is then passed to this function,

MPI_WIN_CREATE.

The best setting for the IBM_win_cache hint is application-dependant. If you know

the task never originates more than one RMA per remote task in an epoch, you

might prefer to shut off caching. Setting the hint to 0 prevents caching and memory

allocation altogether. If you expect the task to originate more than one small RMA

per remote task, and can estimate the total number of small RMAs in a typical

epoch you can use that estimate as a guide. If there will be n small RMAs per

epoch, any cache greater than n*24 (or n*32 for a 64-bit application) is wasted. If n

is a large number, such that n*24 (or n*32 for a 64-bit application) would require too

much memory, the choice of a smaller cache will provide enough aggregation

potential to yield most of the possible performance benefit.

If the IBM_win_cache hint is not present, 64 KB is reserved.

The various tasks in the group of comm may specify completely different target

windows, in location, size, displacement units and Info arguments. As long as all the

get, put, and accumulate accesses to a particular task fit their specific target

window this should not pose a problem. The same area in memory may appear in

multiple windows, each associated with a different window object. However,

concurrent communications to distinct, overlapping windows may lead to erroneous

results.

A window can be created in any part of the task memory. However, on some

systems, the performance of windows in memory allocated by MPI_ALLOC_MEM

will be better. MPI_ALLOC_MEM has no advantage in PE MPI, but may be used to

improve the portability of your code to a system where MPI_ALLOC_MEM does do

special memory allocation.

The default for MP_CSS_INTERRUPT is no. If you do not override the default, MPI

one-sided communication enables interrupts while windows are open. If you have

forced interrupts to yes or no, MPI one-sided communication does not alter your

selection.

MPI_WIN_CREATE

Chapter 3. MPI subroutines and functions 553

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|

|

Errors

Can’t create RMA window in single threaded environment

MP_SINGLE_THREAD is set to yes

Invalid info argument (handle)

Invalid intra-communicator (handle)

Invalid window displacement unit (value)

the value of the window displacement unit is less than 1

Invalid window size (value)

the value of the window size is less than 0

MPI not initialized

MPI already finalized

Related information

 MPI_WIN_FREE

 MPI_WIN_GET_GROUP

MPI_WIN_CREATE

554 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_CREATE_ERRHANDLER, MPI_Win_create_errhandler

Purpose

Creates an error handler that can be attached to windows.

C synopsis

#include <mpi.h>

int MPI_Win_create_errhandler (MPI_Win_errhandler_fn *function,

 MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

MPI::Errhandler MPI::Win::Create_errhandler(MPI::Win::Errhandler_fn* function);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_CREATE_ERRHANDLER(EXTERNAL FUNCTION, INTEGER ERRHANDLER,

 INTEGER IERROR)

Description

In C, the user subroutine should be a function of type MPI_Win_errhandler_fn,

which is defined as:

typedef void MPI_Win_errhandler_fn(MPI_Win *, int *, ...);

The first argument is the window in use, the second is the error code to be

returned.

In C++, the user subroutine should be of the form:

typedef void MPI::Win::Errhandler_fn(MPI::Win &, int *, ...);

In FORTRAN, the user subroutine should be of the form:

SUBROUTINE WIN_ERRHANDLER_FN(WIN, ERROR_CODE, ...)

INTEGER WIN, ERROR_CODE

Parameters

function

The user-defined error-handling procedure (function) (IN)

errhandler

The MPI error handler (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The MPI standard specifies a varargs error handler prototype. A correct user error

handler would be coded as:

void my_handler(MPI_Win *win, int *errcode, ...){}

PE MPI passes additional arguments to an error handler. The MPI standard allows

this and urges an MPI implementation that does so to document the additional

arguments. These additional arguments will be ignored by fully portable user error

handlers. The extra errhandler arguments can be accessed by using the C varargs

MPI_WIN_CREATE_ERRHANDLER

Chapter 3. MPI subroutines and functions 555

(or stdargs) facility, but programs that do so will not port cleanly to other MPI

implementations that might have different additional arguments.

The effective prototype for an error handler in PE MPI is:

typedef void (MPI_Handler_function)

 (MPI_Win *win, int *code, char *routine_name, int *flag,

 MPI_Aint *badval)

The additional arguments are:

routine_name

the name of the MPI routine in which the error occurred

flag true if badval is meaningful, otherwise false

badval

the non-valid integer or long value that triggered the error

The interpretation of badval is context-dependent, so badval is not likely to be

useful to a user error handler function that cannot identify this context. The

routine_name string is more likely to be useful.

Errors

Null function not allowed

MPI not initialized

MPI already finalized

Related information

 MPI_ERRHANDLER_CREATE

 MPI_WIN_CALL_ERRHANDLER

 MPI_WIN_GET_ERRHANDLER

 MPI_WIN_SET_ERRHANDLER

MPI_WIN_CREATE_ERRHANDLER

556 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_CREATE_KEYVAL, MPI_Win_create_keyval

Purpose

Generates a new window attribute key.

C synopsis

#include <mpi.h>

int MPI_Win_create_keyval (MPI_Win_copy_attr_function *win_copy_attr_fn,

 MPI_Win_delete_attr_function *win_delete_attr_fn,

 int *win_keyval, void *extra_state);

C++ synopsis

#include mpi.h

static int MPI::Win::Create_keyval(MPI::Win::Copy_attr_function* win_copy_attr_fn,

 MPI::Win::Delete_attr_function* win_delete_attr_fn,

 void* extra_state);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_CREATE_KEYVAL(EXTERNAL WIN_COPY_ATTR_FN,

 EXTERNAL WIN_DELETE_ATTR_FN, INTEGER WIN_KEYVAL,

 INTEGER EXTRA_STATE, INTEGER IERROR)

Description

This subroutine creates a new attribute key for a window and returns a handle to it

in the win_keyval argument. A key is unique in a task and is opaque to the user.

Once created, a key can be used to associate an attribute with a window and

access it within the local task.

The argument win_copy_attr_fn can be specified as MPI_WIN_NULL_COPY_FN or

MPI_WIN_DUP_FN in C, C++, or FORTRAN. The MPI_WIN_NULL_COPY_FN

function returns flag = 0 and MPI_SUCCESS. MPI_WIN_DUP_FN is a simple copy

function that sets flag = 1, returns the value of attribute_val_in in attribute_val_out,

and returns MPI_SUCCESS.

The argument win_delete_attr_fn can be specified as

MPI_WIN_NULL_DELETE_FN in C, C++, or FORTRAN. The

MPI_WIN_NULL_DELETE_FN function returns MPI_SUCCESS.

The attribute copy and delete functions are defined as follows (only the C form is

shown here):

int MPI_Win_copy_attr_fn(MPI_Datatype oldtype, int type_keyval,

 void *extra_state, void *attribute_val_in,

 void *attribute_val_out, int *flag)

int MPI_Win_delete_attr_fn(MPI_Datatype type, int type_keyval,

 void *attribute_val, void *extra_state)

The attribute_val_in parameter is the value of the attribute. The attribute_val_out

parameter is the address of the value, so the function can set a new value. The

attribute_val_out parameter is logically a void**, but it is prototyped as void*, to

avoid the need for complex casting.

MPI_WIN_CREATE_KEYVAL

Chapter 3. MPI subroutines and functions 557

Parameters

extra_state

The extra state for callback functions (integer) (IN)

win_copy_attr_fn

The copy callback function for win_keyval (IN)

win_delete_attr_fn

The delete callback function for win_keyval (IN)

win_keyval

The key value for future access (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_KEYVAL_CREATE

 MPI_WIN_FREE_KEYVAL

MPI_WIN_CREATE_KEYVAL

558 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_DELETE_ATTR, MPI_Win_delete_attr

Purpose

Deletes an attribute from a window.

C synopsis

#include <mpi.h>

int MPI_Win_delete_attr (MPI_Win win, int win_keyval);

C++ synopsis

#include mpi.h

void MPI::Win::Delete_attr(int win_keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_DELETE_ATTR(INTEGER WIN, INTEGER WIN_KEYVAL, INTEGER IERROR)

Description

This subroutine deletes an attribute from window win.

Parameters

win

The window from which the attribute is deleted (handle) (INOUT)

win_keyval

The key value (integer) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid window handle (handle)

Invalid keyval (value)

Invalid use of predefined key (handle)

Invalid key type (value)

MPI not initialized

MPI already finalized

Related information

 MPI_GET_ATTR

 MPI_SET_ATTR

MPI_WIN_DELETE_ATTR

Chapter 3. MPI subroutines and functions 559

MPI_Win_f2c

Purpose

Returns a C handle to a window.

C synopsis

#include <mpi.h>

MPI_Win MPI_Win_f2c(MPI_Fint win);

Description

This function does not have C++ or FORTRAN bindings. MPI_Win_f2c returns a C

handle to a window. If win is a valid FORTRAN handle to a window, MPI_Win_f2c

returns a valid C handle to that same window. If win is set to the FORTRAN value

MPI_WIN_NULL, MPI_Win_f2c returns the equivalent null C handle. If win is not a

valid FORTRAN handle, MPI_Win_f2c returns a non-valid C handle. The converted

handle is returned as the function’s value. There is no error detection or return

code.

Parameters

win

The window (handle) (IN)

Errors

None.

Related information

 MPI_Win_c2f

MPI_Win_f2c

560 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_FENCE, MPI_Win_fence

Purpose

Synchronizes RMA calls on a window.

C synopsis

#include <mpi.h>

int MPI_Win_fence (int assert, MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Fence(int assert) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_FENCE(INTEGER ASSERT, INTEGER WIN, INTEGER IERROR)

Description

This subroutine, which is collective on the group of win, synchronizes RMA calls on

window win. All RMA operations on win originating at a given task and started

before the fence call will complete at that task before the fence call returns. They

will be completed at their target before the fence call returns at the target. RMA

operations on win started by a task after the fence call returns will access their

target window only after MPI_WIN_FENCE has been called by the target task.

The call completes an RMA access epoch if it was preceded by another fence call

and the local task issued RMA communication calls on win between these two calls.

The call completes an RMA exposure epoch if it was preceded by another fence

call and the local window was the target of RMA accesses between these two calls.

The call starts an RMA access epoch if it is followed by another fence call and by

RMA communication calls issued between these two fence calls. The call starts an

exposure epoch if it is followed by another fence call and the local window is the

target of RMA accesses between these two fence calls. Thus, the fence call is

equivalent to calls to a subset of post, start, complete, and wait.

A fence call usually entails a barrier synchronization: a task completes a call to

MPI_WIN_FENCE only after all other tasks in the group entered their matching call.

However, a call to MPI_WIN_FENCE that is known not to end any epoch (in

particular, a call with assert set to MPI_MODE_NOPRECEDE) does not necessarily

act as a barrier.

Parameters

assert The program assertion (integer) (IN)

win The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Calls to MPI_WIN_FENCE should both precede and follow calls to put, get, or

accumulate that are synchronized with fence calls.

MPI_WIN_FENCE

Chapter 3. MPI subroutines and functions 561

The assert argument provides assertions on the context of the call that can be used

to optimize performance. A value of assert set to 0 is always valid. Other valid

assert values are:

v MPI_MODE_NOPRECEDE

v MPI_MODE_NOPUT

v MPI_MODE_NOSTORE

v MPI_MODE_NOSUCCEED

When the assert value is set to MPI_MODE_NOPRECEDE, the function does not

enforce the completion of prior RMA operations. Because the

MPI_MODE_NOPRECEDE assertion promises that there have been no prior RMA

operations, it allows MPI_WIN_FENCE to avoid the cost of confirming that prior

RMA operations have completed both locally and remotely. If

MPI_MODE_NOPRECEDE is used, it must be used on all calls to

MPI_WIN_FENCE in the group.

When the assert value is set to MPI_MODE_NOSUCCEED, the function skips

some re-initialization of window state because it can assume that either there is no

more RMA and the window will be closed, or some epoch initiating synchronization

call will be made before additional RMA operations.

If MPI_MODE_NOPRECEDE or MPI_MODE_NOSUCCEED is used on only some

callers, or if there have been RMA operations prior to a call with

MPI_MODE_NOPRECEDE, the effect on the application is undefined. Use any

assertion with care.

A logical use for these assertions is when an application has a loop containing a

load/store epoch and an RMA epoch in every iteration. The first MPI_WIN_FENCE

in the loop might assert MPI_MODE_NOSUCCEED and be followed by code that

does computation reading and updating the window memory. After this computation,

another MPI_WIN_FENCE which asserts MPI_MODE_NOPRECEDE opens an

epoch of RMA operations. When the RMA operations are done, the loop goes back

to the top where the MPI_WIN_FENCE with the assertion

MPI_MODE_NOSUCCEED completes the RMA operations from the prior iteration,

and readies another load/store epoch.

An assert value of MPI_MODE_NOPUT is a promise the application will not do an

MPI_PUT or MPI_ACCUMULATE with the local window as target, until after the

next MPI_WIN_FENCE. PE MPI ignores an assert value of MPI_MODE_NOPUT,

but permits the user to specify this value in order to write applications that are

portable to other environments, where this assert is meaningful.

An assert value of MPI_MODE_NOSTORE is a promise that the application has not

attempted to update the local window using local store, MPI_GET, or any form of

message receive since the previous MPI_WIN_FENCE. PE MPI ignores an assert

value of MPI_MODE_NOPUT, but permits the user to specify this value in order to

write applications that are portable to other environments, where this assert is

meaningful.

If an assert is used on a call that does not support that particular assert, the call will

raise an error in class MPI_ERR_ASSERT. If an assert that is supported for a call

is used, but the application structure makes the assert incorrect in the context of

this particular call, there will be no error raised at the call and the kinds of failure

that a user will experience are not always predictable. Because an assert is a

statement about the structure of your application, a properly chosen assert will be

MPI_WIN_FENCE

562 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

|

|

|

|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

valid for any MPI implementation. An improperly chosen assert may do no harm on

one MPI implementation and cause unexplainable failures on another.

Errors

Invalid window handle (handle)

Access epoch already in effect

Exposure epoch already in effect

Can’t start exposure epoch on a locked target

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Assertion is not valid for MPI_WIN_FENCE

MPI_WIN_FENCE

Chapter 3. MPI subroutines and functions 563

|
|

|

|

MPI_WIN_FREE, MPI_Win_free

Purpose

Frees the window object and returns a null handle (equal to MPI_WIN_NULL).

C synopsis

#include <mpi.h>

int MPI_Win_free (MPI_Win *win);

C++ synopsis

#include mpi.h

void MPI::Win::Free();

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_FREE(INTEGER WIN, INTEGER IERROR)

Description

This is a collective operation issued by all tasks in the group associated with win.

MPI_WIN_FREE(win) can be invoked by a task only after it has completed its

involvement in RMA communication on window win. That is, the task has called

MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to

MPI_WIN_POST, or called MPI_WIN_COMPLETE to match a previous call to

MPI_WIN_START, or called MPI_WIN_UNLOCK to match a previous call to

MPI_WIN_LOCK. When the call returns, the window memory can be freed.

Parameters

win

The window object (handle) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid window handle (handle)

Pending origin activity when freeing a window

Pending target activity when freeing a window

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Related information

 MPI_WIN_CREATE

MPI_WIN_FREE

564 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_FREE_KEYVAL, MPI_Win_free_keyval

Purpose

Marks a window attribute key for deallocation.

C synopsis

#include <mpi.h>

int MPI_Win_free_keyval (int *win_keyval);

C++ synopsis

#include mpi.h

void MPI::Win::Free_keyval(int& win_keyval);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_FREE_KEYVAL(INTEGER WIN_KEYVAL, INTEGER IERROR)

Description

This subroutine sets keyval to MPI_KEYVAL_INVALID and marks the attribute key

for deallocation. You can free an attribute key that is in use because the actual

deallocation occurs only when all active references to it are complete. These

references, however, need to be explicitly freed. Use calls to

MPI_WIN_DELETE_ATTR to free one attribute instance. To free all attribute

instances associated with a communicator, use MPI_WIN_FREE.

Parameters

win_keyval

The key value (integer) (INOUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid use of predefined key (handle)

MPI not initialized

MPI already finalized

Related information

 MPI_KEYVAL_CREATE

 MPI_WIN_CREATE_KEYVAL

MPI_WIN_FREE_KEYVAL

Chapter 3. MPI subroutines and functions 565

MPI_WIN_GET_ATTR, MPI_Win_get_attr

Purpose

Retrieves the window attribute value identified by the key.

C synopsis

#include <mpi.h>

int MPI_Win_get_attr (MPI_Win win, int win_keyval,

 void *attribute_val, int *flag);

C++ synopsis

#include mpi.h

bool MPI::Win::Get_attr(int win_keyval, void* attribute_val) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_GET_ATTR(INTEGER WIN, INTEGER WIN_KEYVAL, INTEGER ATTRIBUTE_VAL,

 LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine retrieves an attribute value by key. If there is no key with value

keyval, the call is erroneous. However, the call is valid if there is a key value keyval,

but no attribute is attached on comm for that key. In this case, the call returns flag =

false.

Parameters

win

The window to which the attribute is attached (handle) (IN)

win_keyval

The key value (integer) (IN)

attribute_val

The attribute value, unless flag = false (OUT)

flag

Set to false if there is no attribute associated with the key (logical) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The implementation of MPI_WIN_SET_ATTR and MPI_WIN_GET_ATTR involves

saving a single word of information in the window. The languages C and FORTRAN

have different approaches to using this capability:

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_WIN_SET_ATTR, you allocate some storage for

the attribute structure and then call MPI_WIN_SET_ATTR to record the address

of this structure. You must make sure that the structure remains intact as long as

it may be useful. As the programmer, you will also declare a variable of type

“pointer to attribute structure” and pass the address of this variable when calling

MPI_WIN_GET_ATTR

566 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_GET_ATTR. Both MPI_WIN_SET_ATTR and MPI_WIN_GET_ATTR

take a void* parameter, but this does not imply that the same parameter is

passed to either one.

In FORTRAN:

MPI_WIN_SET_ATTR records an address-size integer and

MPI_WIN_GET_ATTR returns the address-size integer. As the programmer, you

can choose to encode all attribute information in this integer or maintain some

kind of database in which the integer can index. Either of these approaches will

port to other MPI implementations.

 XL FORTRAN has an additional feature that will allow some of the same

functions a C programmer would use. This is the POINTER type, which is

described in the IBM XL FORTRAN Compiler for AIX Reference. Use of this

feature will impact the program’s portability.

Errors

Invalid window handle (handle)

Invalid keyval (value)

Invalid key type (value)

MPI not initialized

MPI already finalized

Related information

 MPI_DELETE_ATTR

 MPI_SET_ATTR

MPI_WIN_GET_ATTR

Chapter 3. MPI subroutines and functions 567

MPI_WIN_GET_ERRHANDLER, MPI_Win_get_errhandler

Purpose

Retrieves the error handler currently associated with a window.

C synopsis

#include <mpi.h>

int MPI_Win_get_errhandler (MPI_Win win, MPI_Errhandler *errhandler);

C++ synopsis

#include mpi.h

MPI::Errhandler MPI::Win::Get_errhandler() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_GET_ERRHANDLER(INTEGER WIN, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine returns the error handler errhandler currently associated with

window win.

Parameters

win

The window (handle) (IN)

errhandler

The error handler currently associated with the window (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid window handle (handle)

MPI not initialized

MPI already finalized

Related information

 MPI_WIN_CREATE_ERRHANDLER

 MPI_WIN_SET_ERRHANDLER

MPI_WIN_GET_ERRHANDLER

568 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_GET_GROUP, MPI_Win_get_group

Purpose

Returns a duplicate of the group of the communicator used to create a window.

C synopsis

#include <mpi.h>

int MPI_Win_get_group (MPI_Win *win, MPI_Group *group);

C++ synopsis

#include mpi.h

MPI::Group MPI::Win::Get_group() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_GET_GROUP(INTEGER WIN, INTEGER GROUP, INTEGER IERROR)

Description

This subroutine returns a duplicate of the group of the communicator used to create

the window associated with win. The group is returned in group. The user is

responsible for freeing group when it is no longer needed.

It is necessary to know the group associated with a window to be able to create the

subset groups needed by MPI_WIN_POST and MPI_WIN_START.

Parameters

win

The window object (handle) (IN)

group

The group of tasks that share access to the window (handle) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid window handle (handle)

MPI not initialized

MPI already finalized

Related information

 MPI_GROUP_FREE

 MPI_WIN_CREATE

 MPI_WIN_POST

 MPI_WIN_START

MPI_WIN_GET_GROUP

Chapter 3. MPI subroutines and functions 569

MPI_WIN_GET_NAME, MPI_Win_get_name

Purpose

Returns the name that was last associated with a window.

C synopsis

#include <mpi.h>

int MPI_Win_get_name (MPI_Win win, char *win_name, int *resultlen);

C++ synopsis

#include mpi.h

void MPI::Win::Get_name(char* win_name, int& resultlen) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_GET_NAME(INTEGER WIN, CHARACTER*(*) WIN_NAME, INTEGER RESULTLEN,

 INTEGER IERROR)

Description

This subroutine returns the last name that was associated with the specified

window. The name can be set and retrieved from any language. The same name is

returned independent of the language used. The name should be allocated so it can

hold a resulting string that is the length of MPI_MAX_OBJECT_NAME. For PE MPI,

the value of MPI_MAX_OBJECT_NAME is 256. MPI_WIN_GET_NAME returns a

copy of the set name in win_name.

Parameters

win

The window with the name to be returned (handle) (IN)

win_name

The name previously stored on the window, or an empty string if no such name

exists (string) (OUT)

resultlen

The length of the returned name (integer) (OUT)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

If you did not associate a name with a window, or if an error occurs,

MPI_WIN_GET_NAME returns an empty string (all spaces in FORTRAN or ″″ in C

and C++).

It is safe simply to print the string returned by MPI_WIN_GET_NAME, as it is

always a valid string even if there was no name.

Errors

Fatal errors:

Invalid window handle

MPI already finalized

MPI_WIN_GET_NAME

570 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI not initialized

Related information

 MPI_WIN_SET_NAME

MPI_WIN_GET_NAME

Chapter 3. MPI subroutines and functions 571

MPI_WIN_LOCK, MPI_Win_lock

Purpose

Starts an RMA access epoch at the target task.

C synopsis

#include <mpi.h>

int MPI_Win_lock (int lock_type, int rank, int assert, MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Lock(int lock_type, int rank, int assert) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_LOCK(INTEGER LOCK_TYPE, INTEGER RANK, INTEGER ASSERT,

 INTEGER WIN, INTEGER IERROR)

Description

This subroutine starts an RMA access epoch at the target task. Only the window at

the task with rank rank can be accessed by RMA operations on win during that

epoch.

Parameters

state Set to either MPI_LOCK_EXCLUSIVE or MPI_LOCK_SHARED (state) (IN)

rank The rank of the locked window (nonnegative integer) (IN)

assert The program assertion (integer) (IN)

win The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The assert value on MPI_WIN_LOCK does not affect optimization of PE MPI. A

value of assert set to 0 is always valid. Other valid assert values are:

v MPI_MODE_NOCHECK

RMA operations can be started immediately. PE MPI permits the user to specify an

assert value of MPI_MODE_NOCHECK, in order to write applications portable to

other environments, where this assert is meaningful.

If an assert is used on a call that does not support that particular assert, the call will

raise an error in class MPI_ERR_ASSERT. If an assert that is supported for a call

is used, but the application structure makes the assert incorrect in the context of

this particular call, there will be no error raised at the call and the kinds of failure

that a user will experience are not always predictable. Because an assert is a

statement about the structure of your application, a properly chosen assert will be

valid for any MPI implementation. An improperly chosen assert may do no harm on

one MPI implementation and cause unexplainable failures on another.

MPI_WIN_LOCK

572 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|

|

|
|
|

|
|
|
|
|
|
|
|

Errors

Invalid lock type (value)

Invalid window handle (handle)

Target outside window group (rank)

Access epoch already in effect

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Assertion is not valid for MPI_WIN_LOCK

Related information

 MPI_WIN_UNLOCK

MPI_WIN_LOCK

Chapter 3. MPI subroutines and functions 573

|

|

MPI_WIN_POST, MPI_Win_post

Purpose

Starts an RMA exposure epoch for a local window.

C synopsis

#include <mpi.h>

int MPI_Win_post (MPI_Group group, int assert, MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Post(const MPI::Group& group, int assert) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_POST(INTEGER GROUP, INTEGER ASSERT, INTEGER WIN, INTEGER IERROR)

Description

This subroutine starts an RMA exposure epoch for the local window associated with

win. Only tasks in group should access the window with RMA calls on win during

this epoch. Each task in group must issue a matching call to MPI_WIN_START.

MPI_WIN_POST does not block. The exposure epoch is closed by a call to

MPI_WIN_TEST or MPI_WIN_WAIT.

Parameters

group The group of target tasks (handle) (IN)

assert The program assertion (integer) (IN)

win The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

It is erroneous to have a window locked and exposed (in an exposure epoch)

concurrently. That is, a task may not call MPI_WIN_LOCK to lock a target window if

the target task has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT.

It is erroneous to call MPI_WIN_POST while the local window is locked.

Users need to use explicit synchronization code in order to enforce mutual

exclusion between locking periods and exposure epochs on a window.

The use of MPI_WIN_POST and MPI_WIN_WAIT at a task requires that

MPI_WIN_POST identify a subset of the tasks in the window group, each of which

will do a corresponding MPI_WIN_START.

The assert argument provides assertions on the context of the call that can be used

to optimize performance. A value of assert set to 0 is always valid. Other valid

assert values are:

v MPI_MODE_NOCHECK

v MPI_MODE_NOPUT

v MPI_MODE_NOSTORE

MPI_WIN_POST

574 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

|

|

|

When the assert value is set to MPI_MODE_NOCHECK, the function skips the

sending of POST notification to the corresponding callers of MPI_WIN_START. If

MPI_MODE_NOCHECK is used, it must be used on all associated calls to

MPI_WIN_POST and MPI_WIN_START. The MPI_MODE_NOCHECK assertion is

only to be used when the structure of the application code provides an absolute

guarantee that the post occurs before any task tries to do an RMA with the

MPI_WIN_POST caller as target. If the application structure cannot provide this

guarantee, there will be a race condition. Sometime the race will go the wrong way

and the application will terminate with a fatal error. The behavior of an application is

undefined when it uses an assertion incorrectly.

An assert value of MPI_MODE_NOSTORE is a promise that the application has not

caused the local window to be updated by local store functions (or local get or

receive calls) since last synchronization. On some MPI implementations, this

assertion might remove the need for a cache synchronization at the post call. PE

MPI ignores an assert value of MPI_MODE_NOSTORE, but permits the user to

specify this value in order to write applications that are portable to other

environments, where this assert is meaningful.

An assert value of MPI_MODE_NOPUT is a promise that the application will not

cause the local window to be updated by put or accumulate calls after the post call,

until the ensuing (wait) synchronization. On some MPI implementations, this

assertion might remove the need for a cache synchronization at the wait call. PE

MPI ignores an assert value of MPI_MODE_NOPUT, but permits the user to specify

this value in order to write applications that are portable to other environments,

where this assert is meaningful.

If an assert is used on a call that does not support that particular assert, the call will

raise an error in class MPI_ERR_ASSERT. If an assert that is supported for a call

is used, but the application structure makes the assert incorrect in the context of

this particular call, there will be no error raised at the call and the kinds of failure

that a user will experience are not always predictable. Because an assert is a

statement about the structure of your application, a properly chosen assert will be

valid for any MPI implementation. An improperly chosen assert may do no harm on

one MPI implementation and cause unexplainable failures on another.

Errors

Invalid group (handle)

Invalid window handle (handle)

Group is not a subset of window group

Exposure epoch already in effect

Can’t start exposure epoch on a locked target

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Assertion is not valid for MPI_WIN_POST

MPI_WIN_POST

Chapter 3. MPI subroutines and functions 575

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|

Related information

 MPI_WIN_COMPLETE

 MPI_WIN_START

 MPI_WIN_TEST

 MPI_WIN_WAIT

MPI_WIN_POST

576 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|

MPI_WIN_SET_ATTR, MPI_Win_set_attr

Purpose

Attaches the window attribute value to the window and associates it with the key.

C synopsis

#include <mpi.h>

int MPI_Win_set_attr (MPI_Win win, int win_keyval, void *attribute_val);

C++ synopsis

#include mpi.h

void MPI::Win::Set_attr(int win_keyval, const void* attribute_val);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_SET_ATTR(INTEGER WIN, INTEGER WIN_KEYVAL,

 INTEGER ATTRIBUTE_VAL, INTEGER IERROR)

Description

This subroutine stores the attribute value for retrieval by MPI_WIN_GET_ATTR. Any

previous value is deleted with the attribute delete_fn being called and the new

value is stored. If there is no key with value keyval, the call is erroneous.

Parameters

win

The window to which the attribute will be attached (handle) (INOUT)

win_keyval

The key value (integer) (IN)

attribute_val

The attribute value (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The implementation of MPI_WIN_SET_ATTR and MPI_WIN_GET_ATTR involves

saving a single word of information in the window. The languages C and FORTRAN

have different approaches to using this capability:

In C:

As the programmer, you normally define a struct that holds arbitrary attribute

information. Before calling MPI_WIN_SET_ATTR, you allocate some storage for

the attribute structure and then call MPI_WIN_SET_ATTR to record the address

of this structure. You must make sure that the structure remains intact as long as

it may be useful. As the programmer, you will also declare a variable of type

“pointer to attribute structure” and pass the address of this variable when calling

MPI_WIN_GET_ATTR. Both MPI_WIN_SET_ATTR and MPI_WIN_GET_ATTR

take a void* parameter, but this does not imply that the same parameter is

passed to either one.

In FORTRAN:

MPI_WIN_SET_ATTR records an address-size integer and

MPI_WIN_GET_ATTR returns the address-size integer. As the programmer, you

MPI_WIN_SET_ATTR

Chapter 3. MPI subroutines and functions 577

can choose to encode all attribute information in this integer or maintain some

kind of database in which the integer can index. Either of these approaches will

port to other MPI implementations.

 Many of the FORTRAN compilers include an additional feature that allows some

of the same functions a C programmer would use. These compilers support the

POINTER type, often referred to as a Cray pointer. XL FORTRAN is one of the

compilers that supports the POINTER type. For more information, see IBM XL

FORTRAN Compiler for AIX Reference

Errors

Invalid window handle (handle)

Invalid keyval (value)

Invalid use of predefined key (handle)

Invalid key type (value)

MPI not initialized

MPI already finalized

Related information

 MPI_WIN_DELETE_ATTR

 MPI_WIN_GET_ATTR

MPI_WIN_SET_ATTR

578 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_SET_ERRHANDLER, MPI_Win_set_errhandler

Purpose

Attaches a new error handler to a window.

C synopsis

#include <mpi.h>

int MPI_Win_set_errhandler (MPI_Win win, MPI_Errhandler errhandler);

C++ synopsis

#include mpi.h

void MPI::Win::Set_errhandler(const MPI::Errhandler& errhandler);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_SET_ERRHANDLER(INTEGER WIN, INTEGER ERRHANDLER, INTEGER IERROR)

Description

This subroutine attaches the error handler errhandler to window win.

Parameters

win

The window (handle) (INOUT)

errhandler

The new error handler for the window (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The error handler must be either a predefined error handler, or an error handler

created by a call to MPI_WIN_CREATE_ERRHANDLER. Any previously-attached

error handler is replaced.

For information about a predefined error handler for C++, see IBM Parallel

Environment: MPI Programming Guide.

Errors

Invalid error handler

Invalid window handle (handle)

MPI not initialized

MPI already finalized

Related information

 MPI_ERRHANDLER_FREE

 MPI_WIN_CREATE_ERRHANDLER

 MPI_WIN_GET_ERRHANDLER

MPI_WIN_SET_ERRHANDLER

Chapter 3. MPI subroutines and functions 579

MPI_WIN_SET_NAME, MPI_Win_set_name

Purpose

Associates a name string with a window.

C synopsis

#include <mpi.h>

int MPI_Win_set_name (MPI_Win win, char *win_name);

C++ synopsis

#include mpi.h

void MPI::Win::Set_name(const char* win_name);

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_SET_NAME(INTEGER WIN, CHARACTER*(*) WIN_NAME, INTEGER IERROR)

Description

This subroutine lets you associate a name string with a window.

The character string that is passed to MPI_WIN_SET_NAME is copied to space

managed by the MPI library (so it can be freed by the caller immediately after the

call, or allocated on the stack). Leading spaces in the name are significant, but

trailing spaces are not.

Parameters

win

The window with the identifier to be set (handle) (INOUT)

win_name

The character string that is saved as the window’s name (string) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

MPI_WIN_SET_NAME is a local (noncollective) operation, which affects only the

name of the window as specified in the task that made the MPI_WIN_SET_NAME

call. There is no requirement that the same (or any) name be assigned to a window

in every task where that window exists. However, to avoid confusion, it is a good

idea to give the same name to a window in all of the tasks where it exists.

The length of the name that can be stored is limited to the value of

MPI_MAX_OBJECT_NAME in FORTRAN and MPI_MAX_OBJECT_NAME-1 in C

and C++ to allow for the null terminator. Attempts to use a longer name will result in

truncation of the name. For PE MPI, the value of MPI_MAX_OBJECT_NAME is

256.

Associating a name with a window has no effect on the semantics of an MPI

program, and (necessarily) increases the storage requirement of the program,

because the names must be saved. Therefore, there is no requirement that you use

this subroutine to associate names with windows. However, debugging and profiling

MPI_WIN_SET_NAME

580 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI applications can be made easier if names are associated with data types, as

the debugger or profiler should then be able to present information in a less cryptic

manner.

Errors

Fatal errors:

Invalid window handle

MPI already finalized

MPI not initialized

Related information

 MPI_WIN_GET_NAME

MPI_WIN_SET_NAME

Chapter 3. MPI subroutines and functions 581

MPI_WIN_START, MPI_Win_start

Purpose

Starts an RMA access epoch for a window object.

C synopsis

#include <mpi.h>

int MPI_Win_start (MPI_Group group, int assert, MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Start(const MPI::Group& group, int assert) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_START(INTEGER GROUP, INTEGER ASSERT, INTEGER WIN, INTEGER IERROR)

Description

This subroutine starts an RMA access epoch for win. RMA calls issued on win

during this epoch must access only windows at tasks in group. Each task in group

must issue a matching call to MPI_WIN_POST. RMA accesses to each target

window are delayed, if necessary, until the target task issues the matching call to

MPI_WIN_POST. MPI_WIN_START is allowed to block until the corresponding

MPI_WIN_POST calls are processed, but is not required to.

Parameters

group The group of target tasks (handle) (IN)

assert The program assertion (integer) (IN)

win The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

The use of MPI_WIN_START and MPI_WIN_COMPLETE at a task requires that

MPI_WIN_START identify a subset of the tasks in the window group, each of which

will do a corresponding MPI_WIN_POST.

The assert argument provides assertions on the context of the call that can be used

to optimize performance. A value of assert set to 0 is always valid. Other valid

assert values are:

v MPI_MODE_NOCHECK

When the assert value is set to MPI_MODE_NOCHECK, the RMA functions skip

waiting for a POST notification from the target and simply assume the target has

called MPI_WIN_POST. If MPI_MODE_NOCHECK is used, it must be used on all

associated calls to MPI_WIN_POST and MPI_WIN_START. The

MPI_MODE_NOCHECK assertion is only to be used when the structure of the

application code provides an absolute guarantee that the post occurs before any

task tries to do an RMA with the MPI_WIN_POST caller as target. If the application

structure cannot provide this guarantee, there will be a race condition. Sometime

MPI_WIN_START

582 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

|
|
|

|

|
|
|
|
|
|
|
|

the race will go the wrong way, and the application will terminate with a fatal error.

The behavior of an application is undefined when it uses an assertion incorrectly.

If an assert is used on a call that does not support that particular assert, the call will

raise an error in class MPI_ERR_ASSERT. If an assert that is supported for a call

is used, but the application structure makes the assert incorrect in the context of

this particular call, there will be no error raised at the call and the kinds of failure

that a user will experience are not always predictable. Because an assert is a

statement about the structure of your application, a properly chosen assert will be

valid for any MPI implementation. An improperly chosen assert may do no harm on

one MPI implementation and cause unexplainable failures on another.

Errors

Invalid group (handle)

Invalid window handle (handle)

Group is not a subset of window group (handle)

Access epoch already in effect

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Assertion is not valid for MPI_WIN_START

Related information

 MPI_WIN_COMPLETE

 MPI_WIN_POST

 MPI_WIN_TEST

 MPI_WIN_WAIT

MPI_WIN_START

Chapter 3. MPI subroutines and functions 583

|
|

|
|
|
|
|
|
|
|

|

|

MPI_WIN_TEST, MPI_Win_test

Purpose

Tries to complete an RMA exposure epoch.

C synopsis

#include <mpi.h>

int MPI_Win_test (MPI_Win win, int *flag);

C++ synopsis

#include mpi.h

bool MPI::Win::Test() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_TEST(INTEGER WIN, LOGICAL FLAG, INTEGER IERROR)

Description

This subroutine is the nonblocking version of MPI_WIN_WAIT. It returns flag = true

if MPI_WIN_WAIT would return; otherwise, it returns flag = false. The effect of

MPI_WIN_TEST returning with flag = true is the same as the effect of a return of

MPI_WIN_WAIT. If flag = false is returned, the call has no visible effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked.

Once the call has returned flag = true, it must not be invoked again, until the

window is posted again.

Parameters

flag

The success flag (logical) (OUT)

win

The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Errors

Invalid window handle (handle)

No exposure epoch to terminate

Unsolicited access of local window while exposed

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

MPI_WIN_TEST

584 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Related information

 MPI_WIN_COMPLETE

 MPI_WIN_POST

 MPI_WIN_START

 MPI_WIN_WAIT

MPI_WIN_TEST

Chapter 3. MPI subroutines and functions 585

MPI_WIN_UNLOCK, MPI_Win_unlock

Purpose

Completes an RMA access epoch at the target task.

C synopsis

#include <mpi.h>

int MPI_Win_unlock (int rank, MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Unlock(int rank) const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_UNLOCK(INTEGER RANK, INTEGER WIN, INTEGER IERROR)

Description

This subroutine completes an RMA access epoch started by a call to

MPI_WIN_LOCK(...,win). RMA operations issued during this period will have

completed both at the origin and at the target when the call returns.

Parameters

rank

The rank of the window (nonnegative integer) (IN)

win

The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Errors

Invalid window handle (handle)

Target outside window group (rank)

Origin holds no lock on the target (rank)

No access epoch to terminate

Unsolicited access of target window while locked

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Related information

 MPI_WIN_LOCK

MPI_WIN_UNLOCK

586 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WIN_WAIT, MPI_Win_wait

Purpose

Completes an RMA exposure epoch.

C synopsis

#include <mpi.h>

int MPI_Win_wait (MPI_Win win);

C++ synopsis

#include mpi.h

void MPI::Win::Wait() const;

FORTRAN synopsis

include ’mpif.h’ or use mpi

MPI_WIN_WAIT(INTEGER WIN, INTEGER IERROR)

Description

This subroutine completes an RMA exposure epoch started by a call to

MPI_WIN_POST on win. MPI_WIN_WAIT matches calls to

MPI_WIN_COMPLETE(win) issued by each of the origin tasks that were granted

access to the window during this epoch. The call to MPI_WIN_WAIT will block until

all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all

these origin tasks have completed their RMA accesses to the local window. When

the call returns, all these RMA accesses will have completed at the target window.

Parameters

win

The window object (handle) (IN)

IERROR

The FORTRAN return code. It is always the last argument.

Notes

Errors

Invalid window handle (handle)

No exposure epoch to terminate

Unsolicited access of local window while exposed

RMA communication call in progress

RMA synchronization call in progress

MPI not initialized

MPI already finalized

Related information

 MPI_WIN_COMPLETE

 MPI_WIN_POST

 MPI_WIN_START

MPI_WIN_WAIT

Chapter 3. MPI subroutines and functions 587

MPI_WIN_TEST

MPI_WIN_WAIT

588 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

MPI_WTICK, MPI_Wtick

Purpose

Returns the resolution of MPI_WTIME in seconds.

C synopsis

#include <mpi.h>

double MPI_Wtick(void);

C++ synopsis

#include mpi.h

double MPI::Wtick();

FORTRAN synopsis

include ’mpif.h’ or use mpi

DOUBLE PRECISION MPI_WTICK()

Description

This subroutine returns the resolution of MPI_WTIME in seconds, the time in

seconds between successive clock ticks.

Parameters

None.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_WTIME

MPI_WTICK

Chapter 3. MPI subroutines and functions 589

MPI_WTIME, MPI_Wtime

Purpose

Returns the current value of time as a floating-point value.

C synopsis

#include <mpi.h>

double MPI_Wtime(void);

C++ synopsis

#include mpi.h

double MPI::Wtime();

FORTRAN synopsis

include ’mpif.h’ or use mpi

DOUBLE PRECISION MPI_WTIME()

Description

This subroutine returns the current value of time as a double precision floating point

number of seconds. This value represents elapsed time since some point in the

past. This time in the past will not change during the life of the task. You are

responsible for converting the number of seconds into other units if you prefer.

Parameters

None.

Notes

You can use the attribute key MPI_WTIME_IS_GLOBAL to determine if the values

returned by MPI_WTIME on different nodes are synchronized. See

“MPI_ATTR_GET, MPI_Attr_get” on page 76 for more information.

Errors

MPI not initialized

MPI already finalized

Related information

 MPI_ATTR_GET

 MPI_WTICK

MPI_WTIME

590 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Appendix A. Parallel utility subroutines

These are the user-callable, threadsafe subroutines that take advantage of the

parallel operating environment (POE). There is a C version and a FORTRAN

version for most of the subroutines. Included are subroutines for:

v Controlling distribution of STDIN and STDOUT.

v Synchronizing parallel tasks without using the message passing library.

v Improving control of interrupt driven programs.

v Printing and clearing statistical data.

v Controlling the checkpoint/restart function.

For descriptions of these subroutines, see IBM Parallel Environment: MPI

Programming Guide.

The parallel utility subroutines are:

mpc_isatty

Determines if a device is a terminal on the home node.

MP_BANDWIDTH, mpc_bandwidth

Obtains user space switch bandwidth statistics.

MP_DISABLEINTR, mpc_disableintr

Disables message arrival interrupts for the MPI task from which it was

called.

MP_ENABLEINTR, mpc_enableintr

Enables message arrival interrupts for the MPI task from which it was

called.

MP_FLUSH, mpc_flush

Flushes output buffers to STDOUT. This is a synchronizing call across all

parallel tasks.

MP_INIT_CKPT, mpc_init_ckpt

Starts user-initiated checkpointing.

MP_QUERYINTR, mpc_queryintr

Returns the state of interrupts on a task.

MP_SET_CKPT_CALLBACKS, mpc_set_ckpt_callbacks

Registers functions to be called when an application is checkpointed,

resumed, and restarted.

MP_STATISTICS_WRITE, mpc_statistics_write

Prints both MPCI and LAPI transmission statistics.

MP_STATISTICS_ZERO, mpc_statistics_zero

Resets (zeros) the MPCI_stats_t structure. It has no effect on LAPI.

MP_STDOUT_MODE, mpc_stdout_mode

Sets the mode (single, ordered, unordered) for STDOUT.

MP_STDOUTMODE_QUERY, mpc_stdoutmode_query

Returns the mode to which STDOUT is currently set.

MP_UNSET_CKPT_CALLBACKS, mpc_unset_ckpt_callbacks

Unregisters checkpoint, resume, and restart application callbacks.

© Copyright IBM Corp. 1993, 2006 591

|
|
|

|

|

|

|

|

|
|

pe_dbg_breakpoint

Provides a communication mechanism between POE and an attached third

party debugger (TPD).

pe_dbg_checkpnt

Checkpoints a process which is under debugger control, or a group of

processes.

pe_dbg_checkpnt_wait

Waits for a checkpoint, or pending checkpoint file I/O, to complete.

pe_dbg_getcrid

Returns the checkpoint/restart ID.

pe_dbg_getrtid

Returns the virtual thread ID of a thread in a specified process given its real

thread ID.

pe_dbg_getvtid

Returns the real thread ID of a thread in a specified process given its virtual

thread ID.

pe_dbg_read_cr_errfile

Opens and reads information from a checkpoint or restart error file.

pe_dbg_restart

Restarts processes from a checkpoint file.

592 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Appendix B. Parallel task identification API subroutines

These are the parallel task identification API subroutines that are available for

parallel programming. These subroutines take advantage of the parallel operating

environment (POE).

The POE API subroutines are:

poe_master_tasks

Retrieves the list of process IDs of master POE processes currently running

on this system.

poe_task_info

Returns a NULL-terminated array of pointers to structures of type

POE_TASKINFO.

For descriptions of these subroutines, see IBM Parallel Environment: MPI

Programming Guide.

© Copyright IBM Corp. 1993, 2006 593

594 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Appendix C. Accessibility features for PE

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility features

The following list includes the major accessibility features in IBM Parallel

Environment. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers.

v Keys that are tactilely discernible and do not activate just by touching them.

v Industry-standard devices for ports and connectors.

v The attachment of alternative input and output devices.

Note: The IBM eServer Cluster Information Center and its related publications are

accessibility-enabled for the IBM Home Page Reader. You can operate all

features using the keyboard instead of the mouse.

Keyboard navigation

This product uses standard Microsoft® Windows® navigation keys.

IBM and accessibility

See the IBM Accessibility Center at http://www.ibm.com/able for more information

about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1993, 2006 595

596 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you any

license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country

where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A

PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply to

you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements and/or

changes in the product(s) and/or the program(s) described in this publication at any

time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those

Web sites. The materials at those Web sites are not part of the materials for this

IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes

appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1993, 2006 597

Licensees of this program who wish to have information about it for the purpose of

enabling: (i) the exchange of information between independently created programs

and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Corporation

Department LJEB/P905

2455 South Road

Poughkeepsie, NY 12601-5400

U.S.A

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available

for it are provided by IBM under terms of the IBM Customer Agreement, IBM

International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those

products, their published announcements or other publicly available sources. IBM

has not tested those products and cannot confirm the accuracy of performance,

compatibility or any other claims related to non-IBM products. Questions on the

capabilities of non-IBM products should be addressed to the suppliers of those

products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to IBM,

for the purposes of developing, using, marketing or distributing application programs

conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly

tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,

serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

598 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

All implemented function in the PE MPI product is designed to comply with the

requirements of the Message Passing Interface Forum, MPI: A Message-Passing

Interface Standard. The standard is documented in two volumes, Version 1.1,

University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions

to the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee,

July 18, 1997. The second volume includes a section identified as MPI 1.2 with

clarifications and limited enhancements to MPI 1.1. It also contains the extensions

identified as MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken

together constitute the current standard for MPI.

PE MPI provides support for all of MPI 1.1 and MPI 1.2. PE MPI also provides

support for all of the MPI 2.0 Enhancements, except the contents of the chapter

titled Process Creation and Management.

If you believe that PE MPI does not comply with the MPI standard for the portions

that are implemented, please contact IBM Service.

Trademarks

The following are trademarks of International Business Machines Corporation in the

United States, other countries, or both:

 AFS

 AIX

 AIX 5L

 DFS

 eServer

 IBM

 IBM Tivoli® Workload Scheduler LoadLeveler

 IBMLink™

 LoadLeveler

 POWER™

 POWER3

 pSeries

 RS/6000

 SP

 System p

 System p5

 System x

 Tivoli

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

InfiniBand is a registered trademark and service mark of the InfiniBand Trade

Association.

Microsoft is a registered trademark of Microsoft Corporation in the United States,

other countries, or both.

Notices 599

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Windows is a registered trademark of Microsoft Corporation in the United States,

other countries, or both.

Other company, product, and service names may be the trademarks or service

marks of others.

Acknowledgments

The PE Benchmarker product includes software developed by the Apache Software

Foundation, http://www.apache.org.

600 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Glossary

A

AFS. Andrew File System.

address. A value, possibly a character or group of

characters that identifies a register, a device, a

particular part of storage, or some other data source or

destination.

AIX. Abbreviation for Advanced Interactive Executive,

IBM’s licensed version of the UNIX operating system.

AIX is particularly suited to support technical computing

applications, including high-function graphics and

floating-point computations.

API. Application programming interface.

application. The use to which a data processing

system is put; for example, a payroll application, an

airline reservation application.

argument. A parameter passed between a calling

program and a called program or subprogram.

attribute. A named property of an entity.

Authentication. The process of validating the identity

of a user or server.

Authorization. The process of obtaining permission to

perform specific actions.

B

bandwidth. For a specific amount of time, the amount

of data that can be transmitted. Bandwidth is expressed

in bits or bytes per second (bps) for digital devices, and

in cycles per second (Hz) for analog devices.

blocking operation. An operation that does not

complete until the operation either succeeds or fails. For

example, a blocking receive will not return until a

message is received or until the channel is closed and

no further messages can be received.

breakpoint. A place in a program, specified by a

command or a condition, where the system halts

execution and gives control to the workstation user or to

a specified program.

broadcast operation. A communication operation

where one processor sends (or broadcasts) a message

to all other processors.

buffer. A portion of storage used to hold input or

output data temporarily.

C

C. A general-purpose programming language. It was

formalized by Uniforum in 1983 and the ANSI standards

committee for the C language in 1984.

C++. A general-purpose programming language that is

based on the C language. C++ includes extensions that

support an object-oriented programming paradigm.

Extensions include:

v strong typing

v data abstraction and encapsulation

v polymorphism through function overloading and

templates

v class inheritance.

chaotic relaxation. An iterative relaxation method that

uses a combination of the Gauss-Seidel and

Jacobi-Seidel methods. The array of discrete values is

divided into subregions that can be operated on in

parallel. The subregion boundaries are calculated using

the Jacobi-Seidel method, while the subregion interiors

are calculated using the Gauss-Seidel method. See also

Gauss-Seidel.

client. A function that requests services from a server

and makes them available to the user.

cluster. A group of processors interconnected through

a high-speed network that can be used for

high-performance computing.

Cluster 1600. See IBM eServer Cluster 1600.

collective communication. A communication

operation that involves more than two processes or

tasks. Broadcasts, reductions, and the MPI_Allreduce

subroutine are all examples of collective communication

operations. All tasks in a communicator must participate.

command alias. When using the PE command-line

debugger pdbx, you can create abbreviations for

existing commands using the pdbx alias command.

These abbreviations are known as command aliases.

communicator. An MPI object that describes the

communication context and an associated group of

processes.

compile. To translate a source program into an

executable program.

condition. One of a set of specified values that a data

item can assume.

core dump. A process by which the current state of a

program is preserved in a file. Core dumps are usually

associated with programs that have encountered an

unexpected, system-detected fault, such as a

© Copyright IBM Corp. 1993, 2006 601

Segmentation Fault or a severe user error. The current

program state is needed for the programmer to

diagnose and correct the problem.

core file. A file that preserves the state of a program,

usually just before a program is terminated for an

unexpected error. See also core dump.

current context. When using the pdbx debugger,

control of the parallel program and the display of its

data can be limited to a subset of the tasks belonging to

that program. This subset of tasks is called the current

context. You can set the current context to be a single

task, multiple tasks, or all the tasks in the program.

D

data decomposition. A method of breaking up (or

decomposing) a program into smaller parts to exploit

parallelism. One divides the program by dividing the

data (usually arrays) into smaller parts and operating on

each part independently.

data parallelism. Refers to situations where parallel

tasks perform the same computation on different sets of

data.

dbx. A symbolic command-line debugger that is often

provided with UNIX systems. The PE command-line

debugger pdbx is based on the dbx debugger.

debugger. A debugger provides an environment in

which you can manually control the execution of a

program. It also provides the ability to display the

program’s data and operation.

distributed shell (dsh). An IBM Parallel System

Support Programs for AIX command that lets you issue

commands to a group of hosts in parallel. See IBM

Parallel System Support Programs for AIX: Command

and Technical Reference for details.

domain name. The hierarchical identification of a host

system (in a network), consisting of human-readable

labels, separated by decimal points.

DPCL target application. The executable program

that is instrumented by a Dynamic Probe Class Library

(DPCL) analysis tool. It is the process (or processes)

into which the DPCL analysis tool inserts probes. A

target application could be a serial or parallel program.

Furthermore, if the target application is a parallel

program, it could follow either the SPMD or the MPMD

model, and may be designed for either a

message-passing or a shared-memory system.

E

environment variable. (1) A variable that describes

the operating environment of the process. Common

environment variables describe the home directory,

command search path, and the current time zone. (2) A

variable that is included in the current software

environment and is therefore available to any called

program that requests it.

Ethernet. A baseband local area network (LAN) that

allows multiple stations to access the transmission

medium at will without prior coordination, avoids

contention by using carrier sense and deference, and

resolves contention by using collision detection and

delayed retransmission. Ethernet uses carrier sense

multiple access with collision detection (CSMA/CD).

event. An occurrence of significance to a task — the

completion of an asynchronous operation such as an

input/output operation, for example.

executable. A program that has been link-edited and

therefore can be run in a processor.

execution. To perform the actions specified by a

program or a portion of a program.

expression. In programming languages, a language

construct for computing a value from one or more

operands.

F

fairness. A policy in which tasks, threads, or

processes must be allowed eventual access to a

resource for which they are competing. For example, if

multiple threads are simultaneously seeking a lock, no

set of circumstances can cause any thread to wait

indefinitely for access to the lock.

Fiber Distributed Data Interface (FDDI). An American

National Standards Institute (ANSI) standard for a local

area network (LAN) using optical fiber cables. An FDDI

LAN can be up to 100 kilometers (62 miles) long, and

can include up to 500 system units. There can be up to

2 kilometers (1.24 miles) between system units and

concentrators.

file system. The collection of files and file

management structures on a physical or logical mass

storage device, such as a diskette or minidisk.

fileset. (1) An individually-installable option or update.

Options provide specific functions. Updates correct an

error in, or enhance, a previously installed program. (2)

One or more separately-installable, logically-grouped

units in an installation package. See also licensed

program and package.

foreign host. See remote host.

FORTRAN. One of the oldest of the modern

programming languages, and the most popular

language for scientific and engineering computations. Its

name is a contraction of FORmula TRANslation. The

two most common FORTRAN versions are FORTRAN

602 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

77, originally standardized in 1978, and FORTRAN 90.

FORTRAN 77 is a proper subset of FORTRAN 90.

function cycle. A chain of calls in which the first caller

is also the last to be called. A function that calls itself

recursively is not considered a function cycle.

functional decomposition. A method of dividing the

work in a program to exploit parallelism. The program is

divided into independent pieces of functionality, which

are distributed to independent processors. This method

is in contrast to data decomposition, which distributes

the same work over different data to independent

processors.

functional parallelism. Refers to situations where

parallel tasks specialize in particular work.

G

Gauss-Seidel. An iterative relaxation method for

solving Laplace’s equation. It calculates the general

solution by finding particular solutions to a set of

discrete points distributed throughout the area in

question. The values of the individual points are

obtained by averaging the values of nearby points.

Gauss-Seidel differs from Jacobi-Seidel in that, for the

i+1st iteration, Jacobi-Seidel uses only values calculated

in the ith iteration. Gauss-Seidel uses a mixture of

values calculated in the ith and i+1st iterations.

global max. The maximum value across all

processors for a given variable. It is global in the sense

that it is global to the available processors.

global variable. A variable defined in one portion of a

computer program and used in at least one other

portion of the computer program.

gprof. A UNIX command that produces an execution

profile of C, COBOL, FORTRAN, or Pascal programs.

The execution profile is in a textual and tabular format.

It is useful for identifying which routines use the most

CPU time. See the man page on gprof.

graphical user interface (GUI). A type of computer

interface consisting of a visual metaphor of a real-world

scene, often of a desktop. Within that scene are icons,

which represent actual objects, that the user can access

and manipulate with a pointing device.

GUI. Graphical user interface.

H

high performance switch. The high-performance

message-passing network that connects all processor

nodes together.

hook. A pdbx command that lets you re-establish

control over all tasks in the current context that were

previously unhooked with this command.

home node. The node from which an application

developer compiles and runs his program. The home

node can be any workstation on the LAN.

host. A computer connected to a network that provides

an access method to that network. A host provides

end-user services.

host list file. A file that contains a list of host names,

and possibly other information, that was defined by the

application that reads it.

host name. The name used to uniquely identify any

computer on a network.

hot spot. A memory location or synchronization

resource for which multiple processors compete

excessively. This competition can cause a

disproportionately large performance degradation when

one processor that seeks the resource blocks,

preventing many other processors from having it,

thereby forcing them to become idle.

I

IBM eServer Cluster 1600. An IBM eServer Cluster

1600 is any CSM-managed cluster comprised of

POWER microprocessor based systems (including

RS/6000 SMPs, RS/6000 SP nodes, and pSeries

SMPs).

IBM Parallel Environment (PE) for AIX. A licensed

program that provides an execution and development

environment for parallel C, C++, and FORTRAN

programs. It also includes tools for debugging, profiling,

and tuning parallel programs.

installation image. A file or collection of files that are

required in order to install a software product on system

nodes. These files are in a form that allows them to be

installed or removed with the AIX installp command.

See also fileset, licensed program, and package.

Internet. The collection of worldwide networks and

gateways that function as a single, cooperative virtual

network.

Internet Protocol (IP). The IP protocol lies beneath

the UDP protocol, which provides packet delivery

between user processes and the TCP protocol, which

provides reliable message delivery between user

processes.

IP. Internet Protocol.

J

Jacobi-Seidel. See Gauss-Seidel.

Glossary 603

|
|
|

 |
 |
 |
 |
 |

 |
 |
 |
 |
 |

 |
 |
 |
 |
 |

K

Kerberos. A publicly available security and

authentication product that works with the IBM Parallel

System Support Programs for AIX software to

authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating system

that controls the resources of the CPU and allocates

them to the users. The kernel is memory-resident, is

said to run in kernel mode (in other words, at higher

execution priority level than user mode), and is

protected from user tampering by the hardware.

L

Laplace’s equation. A homogeneous partial

differential equation used to describe heat transfer,

electric fields, and many other applications.

latency. The time interval between the initiation of a

send by an origin task and the completion of the

matching receive by the target task. More generally,

latency is the time between a task initiating data transfer

and the time that transfer is recognized as complete at

the data destination.

licensed program. A collection of software packages

sold as a product that customers pay for to license. A

licensed program can consist of packages and file sets

a customer would install. These packages and file sets

bear a copyright and are offered under the terms and

conditions of a licensing agreement. See also fileset

and package.

lightweight corefiles. An alternative to standard AIX

corefiles. Corefiles produced in the Standardized

Lightweight Corefile Format provide simple process

stack traces (listings of function calls that led to the

error) and consume fewer system resources than

traditional corefiles.

LoadLeveler. A job management system that works

with POE to let users run jobs and match processing

needs with system resources, in order to make better

use of the system.

local variable. A variable that is defined and used

only in one specified portion of a computer program.

loop unrolling. A program transformation that makes

multiple copies of the body of a loop, also placing the

copies within the body of the loop. The loop trip count

and index are adjusted appropriately so the new loop

computes the same values as the original. This

transformation makes it possible for a compiler to take

additional advantage of instruction pipelining, data

cache effects, and software pipelining.

 See also optimization.

M

management domain . A set of nodes configured for

manageability by the Clusters Systems Management

(CSM) product. Such a domain has a management

server that is used to administer a number of managed

nodes. Only management servers have knowledge of

the whole domain. Managed nodes only know about the

servers managing them; they know nothing of each

other. Contrast with peer domain.

menu. A list of options displayed to the user by a data

processing system, from which the user can select an

action to be initiated.

message catalog. A file created from a message

source file that contains application error and other

messages, which can later be translated into other

languages without having to recompile the application

source code.

message passing. Refers to the process by which

parallel tasks explicitly exchange program data.

Message Passing Interface (MPI). A standardized

API for implementing the message-passing model.

MIMD. Multiple instruction stream, multiple data

stream.

Multiple instruction stream, multiple data stream

(MIMD). A parallel programming model in which

different processors perform different instructions on

different sets of data.

MPMD. Multiple program, multiple data.

Multiple program, multiple data (MPMD). A parallel

programming model in which different, but related,

programs are run on different sets of data.

MPI. Message Passing Interface.

N

network. An interconnected group of nodes, lines, and

terminals. A network provides the ability to transmit data

to and receive data from other systems and users.

Network Information Services. A set of network

services (for example, a distributed service for retrieving

information about the users, groups, network addresses,

and gateways in a network) that resolve naming and

addressing differences among computers in a network.

NIS. See Network Information Services.

node. (1) In a network, the point where one or more

functional units interconnect transmission lines. A

computer location defined in a network. (2) A single

location or workstation in a network. Usually a physical

entity, such as a processor.

604 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

 |
 |
 |
 |
 |

node ID. A string of unique characters that identifies

the node on a network.

nonblocking operation. An operation, such as

sending or receiving a message, that returns

immediately whether or not the operation was

completed. For example, a nonblocking receive will not

wait until a message arrives. By contrast, a blocking

receive will wait. A nonblocking receive must be

completed by a later test or wait.

O

object code. The result of translating a computer

program to a relocatable, low-level form. Object code

contains machine instructions, but symbol names (such

as array, scalar, and procedure names), are not yet

given a location in memory. Contrast with source code.

optimization. A widely-used (though not strictly

accurate) term for program performance improvement,

especially for performance improvement done by a

compiler or other program translation software. An

optimizing compiler is one that performs extensive code

transformations in order to obtain an executable that

runs faster but gives the same answer as the original.

Such code transformations, however, can make code

debugging and performance analysis very difficult

because complex code transformations obscure the

correspondence between compiled and original source

code.

option flag. Arguments or any other additional

information that a user specifies with a program name.

Also referred to as parameters or command-line

options.

P

package. A number of file sets that have been

collected into a single installable image of licensed

programs. Multiple file sets can be bundled together for

installing groups of software together. See also fileset

and licensed program.

parallelism. The degree to which parts of a program

may be concurrently executed.

parallelize. To convert a serial program for parallel

execution.

parallel operating environment (POE). An execution

environment that smooths the differences between

serial and parallel execution. It lets you submit and

manage parallel jobs. It is abbreviated and commonly

known as POE.

parameter. (1) In FORTRAN, a symbol that is given a

constant value for a specified application. (2) An item in

a menu for which the operator specifies a value or for

which the system provides a value when the menu is

interpreted. (3) A name in a procedure that is used to

refer to an argument that is passed to the procedure.

(4) A particular piece of information that a system or

application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) A

logical collection of nodes to be viewed as one system

or domain. System partitioning is a method of

organizing the system into groups of nodes for testing

or running different levels of software of product

environments.

Partition Manager. The component of the parallel

operating environment (POE) that allocates nodes, sets

up the execution environment for remote tasks, and

manages distribution or collection of standard input

(STDIN), standard output (STDOUT), and standard error

(STDERR).

pdbx. The parallel, symbolic command-line debugging

facility of PE. pdbx is based on the dbx debugger and

has a similar interface.

PE. The Parallel Environment for AIX licensed

program.

peer domain. A set of nodes configured for high

availability by the RSCT configuration manager. Such a

domain has no distinguished or master node. All nodes

are aware of all other nodes, and administrative

commands can be issued from any node in the domain.

All nodes also have a consistent view of the domain

membership. Contrast with management domain.

performance monitor. A utility that displays how

effectively a system is being used by programs.

PID. Process identifier.

POE. parallel operating environment.

pool. Groups of nodes on a system that are known to

LoadLeveler, and are identified by a pool name or

number.

point-to-point communication. A communication

operation that involves exactly two processes or tasks.

One process initiates the communication through a send

operation. The partner process issues a receive

operation to accept the data being sent.

procedure. (1) In a programming language, a block,

with or without formal parameters, whose execution is

invoked by means of a procedure call. (2) A set of

related control statements that cause one or more

programs to be performed.

process. A program or command that is actually

running the computer. It consists of a loaded version of

the executable file, its data, its stack, and its kernel data

structures that represent the process’s state within a

multitasking environment. The executable file contains

the machine instructions (and any calls to shared

Glossary 605

 |
 |
 |
 |
 |
 |

 |
 |
 |

objects) that will be executed by the hardware. A

process can contain multiple threads of execution.

 The process is created with a fork() system call and

ends using an exit() system call. Between fork and

exit, the process is known to the system by a unique

process identifier (PID).

 Each process has its own virtual memory space and

cannot access another process’s memory directly.

Communication methods across processes include

pipes, sockets, shared memory, and message passing.

prof. A utility that produces an execution profile of an

application or program. It is useful to identify which

routines use the most CPU time. See the man page for

prof.

profiling. The act of determining how much CPU time

is used by each function or subroutine in a program.

The histogram or table produced is called the execution

profile.

pthread. A thread that conforms to the POSIX Threads

Programming Model.

R

reduced instruction-set computer. A computer that

uses a small, simplified set of frequently-used

instructions for rapid execution.

reduction operation. An operation, usually

mathematical, that reduces a collection of data by one

or more dimensions. For example, the arithmetic SUM

operation is a reduction operation that reduces an array

to a scalar value. Other reduction operations include

MAXVAL and MINVAL.

Reliable Scalable Cluster Technology. A set of

software components that together provide a

comprehensive clustering environment for AIX. RSCT is

the infrastructure used by a variety of IBM products to

provide clusters with improved system availability,

scalability, and ease of use.

remote host. Any host on a network except the one

where a particular operator is working.

remote shell (rsh). A command that lets you issue

commands on a remote host.

RISC. See reduced instruction-set computer.

RSCT. See Reliable Scalable Cluster Technology.

RSCT peer domain. See peer domain.

S

shell script. A sequence of commands that are to be

executed by a shell interpreter such as the Bourne shell

(sh), the C shell (csh), or the Korn shell (ksh). Script

commands are stored in a file in the same format as if

they were typed at a terminal.

segmentation fault. A system-detected error, usually

caused by referencing an non-valid memory address.

server. A functional unit that provides shared services

to workstations over a network — a file server, a print

server, or a mail server, for example.

signal handling. In the context of a message passing

library (such as MPI), there is a need for asynchronous

operations to manage packet flow and data delivery

while the application is doing computation. This

asynchronous activity can be carried out either by a

signal handler or by a service thread. The early IBM

message passing libraries used a signal handler and

the more recent libraries use service threads. The older

libraries are often referred to as the signal handling

versions.

Single program, multiple data (SPMD). A parallel

programming model in which different processors

execute the same program on different sets of data.

source code. The input to a compiler or assembler,

written in a source language. Contrast with object code.

source line. A line of source code.

SPMD. Single program, multiple data.

standard error (STDERR). An output file intended to

be used for error messages for C programs.

standard input (STDIN). The primary source of data

entered into a command. Standard input comes from

the keyboard unless redirection or piping is used, in

which case standard input can be from a file or the

output from another command.

standard output (STDOUT). The primary destination

of data produced by a command. Standard output goes

to the display unless redirection or piping is used, in

which case standard output can go to a file or to

another command.

STDERR. Standard error.

STDIN. Standard input.

STDOUT. Standard output.

stencil. A pattern of memory references used for

averaging. A 4-point stencil in two dimensions for a

given array cell, x(i,j), uses the four adjacent cells,

x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose

execution is invoked by a call. (2) A sequenced set of

instructions or statements that can be used in one or

more computer programs and at one or more points in a

606 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

computer program. (3) A group of instructions that can

be part of another routine or can be called by another

program or routine.

synchronization. The action of forcing certain points

in the execution sequences of two or more

asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer

installation who designs, controls, and manages the use

of the computer system. (2) The person who is

responsible for setting up, modifying, and maintaining

the Parallel Environment.

T

target application. See DPCL target application.

task. A unit of computation analogous to a process. In

a parallel job, there are two or more concurrent tasks

working together through message passing. Though it is

common to allocate one task per processor, the terms

task and processor are not interchangeable.

thread. A single, separately dispatchable, unit of

execution. There can be one or more threads in a

process, and each thread is executed by the operating

system concurrently.

TPD. Third party debugger.

tracing. In PE, the collection of information about the

execution of the program. This information is

accumulated into a trace file that can later be examined.

tracepoint. Tracepoints are places in the program

that, when reached during execution, cause the

debugger to print information about the state of the

program.

trace record. In PE, a collection of information about a

specific event that occurred during the execution of your

program. For example, a trace record is created for

each send and receive operation that occurs in your

program (this is optional and might not be appropriate).

These records are then accumulated into a trace file

that can later be examined.

U

unrolling loops. See loop unrolling.

user. (1) A person who requires the services of a

computing system. (2) Any person or any thing that can

issue or receive commands and message to or from the

information processing system.

User Space. A version of the message passing library

that is optimized for direct access to the high

performance switch. User Space maximizes

performance by passing up all kernel involvement in

sending or receiving a message.

utility program. A computer program in general

support of computer processes; for example, a

diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the

processes of a computer; for example, an input routine.

V

variable. (1) In programming languages, a named

object that may take different values, one at a time. The

values of a variable are usually restricted to one data

type. (2) A quantity that can assume any of a given set

of values. (3) A name used to represent a data item

whose value can be changed while the program is

running. (4) A name used to represent data whose value

can be changed, while the program is running, by

referring to the name of the variable.

X

X Window System. The UNIX industry’s graphics

windowing standard that provides simultaneous views of

several executing programs or processes on high

resolution graphics displays.

Glossary 607

608 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Index

A
abbreviated names xiv

about this book xiii

accessibility 595

keyboard 595

shortcut keys 595

acknowledgments 600

acronyms for product names xiv

APIs
parallel task identification 593

audience of this book xiii

B
blocking collective communication subroutines 5, 47

C
collective communication subroutines

MPI_ALLGATHER 59

MPI_ALLGATHERV 61

MPI_ALLREDUCE 65

MPI_ALLTOALL 68

MPI_ALLTOALLV 70

MPI_ALLTOALLW 72

MPI_BARRIER 80

MPI_BCAST 82

MPI_EXSCAN 160

MPI_GATHER 288

MPI_GATHERV 291

MPI_OP_CREATE 382

MPI_OP_FREE 385

MPI_REDUCE 406

MPI_REDUCE_SCATTER 409

MPI_SCAN 424

MPI_SCATTER 426

MPI_SCATTERV 429

communicator subroutines
MPI_ATTR_DELETE 75

MPI_ATTR_GET 76

MPI_ATTR_PUT 78

MPI_COMM_COMPARE 113

MPI_COMM_CREATE 115

MPI_COMM_CREATE_ERRHANDLER 117

MPI_COMM_CREATE_KEYVAL 119

MPI_COMM_DELETE_ATTR 121

MPI_COMM_DUP 122

MPI_COMM_FREE 125

MPI_COMM_FREE_KEYVAL 126

MPI_COMM_GET_ATTR 127

MPI_COMM_GET_ERRHANDLER 129

MPI_COMM_RANK 133

MPI_COMM_REMOTE_GROUP 134

MPI_COMM_REMOTE_SIZE 135

MPI_COMM_SET_ATTR 136

MPI_COMM_SET_ERRHANDLER 138

MPI_COMM_SIZE 141

communicator subroutines (continued)
MPI_COMM_SPLIT 143

MPI_COMM_TEST_INTER 145

MPI_INTERCOMM_CREATE 363

MPI_INTERCOMM_MERGE 365

MPI_KEYVAL_CREATE 378

MPI_KEYVAL_FREE 380

MPI::Comm::Clone 112

conventions xiii

conversion functions
MPI_Comm_c2f 109

MPI_Comm_f2c 124

MPI_Errhandler_c2f 148

MPI_Errhandler_f2c 151

MPI_File_c2f 163

MPI_File_f2c 172

MPI_Group_c2f 321

MPI_Group_f2c 326

MPI_Info_c2f 342

MPI_Info_f2c 347

MPI_Op_c2f 381

MPI_Op_f2c 384

MPI_Request_c2f 415

MPI_Request_f2c 416

MPI_Status_c2f 448

MPI_Status_f2c 449

MPI_Type_c2f 464

MPI_Type_f2c 495

MPI_Win_c2f 547

MPI_Win_f2c 560

D
data type constructors

MPI_TYPE_CREATE_DARRAY 469

MPI_TYPE_CREATE_SUBARRAY 489

derived data type subroutines
MPI_ADDRESS 58

MPI_GET_ADDRESS 297

MPI_GET_ELEMENTS 301

MPI_PACK 386

MPI_PACK_EXTERNAL 388

MPI_PACK_EXTERNAL_SIZE 390

MPI_PACK_SIZE 392

MPI_SIZEOF 440

MPI_TYPE_COMMIT 465

MPI_TYPE_CONTIGUOUS 467

MPI_TYPE_CREATE_F90_COMPLEX 472

MPI_TYPE_CREATE_F90_INTEGER 474

MPI_TYPE_CREATE_F90_REAL 475

MPI_TYPE_CREATE_HINDEXED 477

MPI_TYPE_CREATE_HVECTOR 479

MPI_TYPE_CREATE_INDEXED_BLOCK 481

MPI_TYPE_CREATE_RESIZED 485

MPI_TYPE_CREATE_STRUCT 487

MPI_TYPE_EXTENT 494

MPI_TYPE_FREE 496

MPI_TYPE_GET_CONTENTS 501

© Copyright IBM Corp. 1993, 2006 609

derived data type subroutines (continued)
MPI_TYPE_GET_ENVELOPE 505

MPI_TYPE_GET_EXTENT 507

MPI_TYPE_GET_TRUE_EXTENT 511

MPI_TYPE_HINDEXED 513

MPI_TYPE_HVECTOR 515

MPI_TYPE_INDEXED 517

MPI_TYPE_LB 519

MPI_TYPE_MATCH_SIZE 520

MPI_TYPE_SIZE 526

MPI_TYPE_STRUCT 527

MPI_TYPE_UB 529

MPI_TYPE_VECTOR 531

MPI_UNPACK 533

MPI_UNPACK_EXTERNAL 535

disability 595

E
environment management subroutines

MPI_ABORT 48

MPI_ERRHANDLER_CREATE 149

MPI_ERRHANDLER_FREE 152

MPI_ERRHANDLER_GET 153

MPI_ERRHANDLER_SET 154

MPI_ERROR_CLASS 156

MPI_ERROR_STRING 159

MPI_FILE_CREATE_ERRHANDLER 168

MPI_FILE_GET_ERRHANDLER 176

MPI_FILE_SET_ERRHANDLER 247

MPI_FINALIZE 284

MPI_FINALIZED 286

MPI_GET_PROCESSOR_NAME 303

MPI_GET_VERSION 304

MPI_INIT 358

MPI_INIT_THREAD 360

MPI_INITIALIZED 362

MPI_IS_THREAD_MAIN 373

MPI_PCONTROL 394

MPI_QUERY_THREAD 400

MPI_WTICK 589

MPI_WTIME 590

error classes 156

adding 52

error codes
adding 54

error strings
adding 56

examples
function 1

subroutine 1

external interface subroutines
MPI_ADD_ERROR_CLASS 52

MPI_ADD_ERROR_CODE 54

MPI_ADD_ERROR_STRING 56

MPI_COMM_CALL_ERRHANDLER 110

MPI_COMM_GET_NAME 130

MPI_COMM_SET_NAME 139

MPI_FILE_CALL_ERRHANDLER 164

MPI_GREQUEST_COMPLETE 316

MPI_GREQUEST_START 317

external interface subroutines (continued)
MPI_STATUS_SET_CANCELLED 450

MPI_STATUS_SET_ELEMENTS 451

MPI_TYPE_GET_NAME 509

MPI_TYPE_SET_NAME 524

MPI_WIN_CALL_ERRHANDLER 548

MPI_WIN_GET_NAME 570

MPI_WIN_SET_NAME 580

F
function sample 1

functions
conversion

MPI_Comm_c2f 109

MPI_Comm_f2c 124

MPI_Errhandler_c2f 148

MPI_Errhandler_f2c 151

MPI_File_c2f 163

MPI_File_f2c 172

MPI_Group_c2f 321

MPI_Group_f2c 326

MPI_Info_c2f 342

MPI_Info_f2c 347

MPI_Op_c2f 381

MPI_Op_f2c 384

MPI_Request_c2f 415

MPI_Request_f2c 416

MPI_Status_c2f 448

MPI_Status_f2c 449

MPI_Type_c2f 464

MPI_Type_f2c 495

MPI_Win_c2f 547

MPI_Win_f2c 560

G
group management subroutines

MPI_COMM_GROUP 132

MPI_GROUP_COMPARE 322

MPI_GROUP_DIFFERENCE 323

MPI_GROUP_EXCL 324

MPI_GROUP_FREE 327

MPI_GROUP_INCL 328

MPI_GROUP_INTERSECTION 330

MPI_GROUP_RANGE_EXCL 331

MPI_GROUP_RANGE_INCL 333

MPI_GROUP_RANK 335

MPI_GROUP_SIZE 336

MPI_GROUP_TRANSLATE_RANKS 337

MPI_GROUP_UNION 339

I
Info subroutines

MPI_INFO_CREATE 343

MPI_INFO_DELETE 344

MPI_INFO_DUP 346

MPI_INFO_FREE 348

MPI_INFO_GET 349

MPI_INFO_GET_NKEYS 351

610 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Info subroutines (continued)
MPI_INFO_GET_NTHKEY 352

MPI_INFO_GET_VALUELEN 354

MPI_INFO_SET 356

L
LookAt message retrieval tool xv

M
message retrieval tool, LookAt xv

MPI error classes 156

MPI one-sided subroutines
MPI_ACCUMULATE 49

MPI_GET 294

MPI_PUT 397

MPI_WIN_COMPLETE 550

MPI_WIN_CREATE 552

MPI_WIN_CREATE_ERRHANDLER 555

MPI_WIN_CREATE_KEYVAL 557

MPI_WIN_DELETE_ATTR 559

MPI_WIN_FENCE 561

MPI_WIN_FREE 564

MPI_WIN_FREE_KEYVAL 565

MPI_WIN_GET_ATTR 566

MPI_WIN_GET_ERRHANDLER 568

MPI_WIN_GET_GROUP 569

MPI_WIN_LOCK 572

MPI_WIN_POST 574

MPI_WIN_SET_ATTR 577

MPI_WIN_SET_ERRHANDLER 579

MPI_WIN_START 582

MPI_WIN_TEST 584

MPI_WIN_UNLOCK 586

MPI_WIN_WAIT 587

MPI_STATUS object subroutines
MPI_REQUEST_GET_STATUS 418

MPI-IO subroutines
MPI_ALLOC_MEM 63

MPI_FILE GET_GROUP 178

MPI_FILE_CLOSE 166

MPI_FILE_DELETE 170

MPI_FILE_GET_AMODE 173

MPI_FILE_GET_ATOMICITY 174

MPI_FILE_GET_BYTE_OFFSET 175

MPI_FILE_GET_INFO 179

MPI_FILE_GET_POSITION 181

MPI_FILE_GET_POSITION_SHARED 182

MPI_FILE_GET_SIZE 183

MPI_FILE_GET_TYPE_EXTENT 185

MPI_FILE_GET_VIEW 187

MPI_FILE_IREAD 189

MPI_FILE_IREAD_AT 192

MPI_FILE_IREAD_SHARED 195

MPI_FILE_IWRITE 198

MPI_FILE_IWRITE_AT 201

MPI_FILE_IWRITE_SHARED 204

MPI_FILE_OPEN 207

MPI_FILE_PREALLOCATE 213

MPI_FILE_READ 215

MPI-IO subroutines (continued)
MPI_FILE_READ_ALL 217

MPI_FILE_READ_ALL_BEGIN 219

MPI_FILE_READ_ALL_END 221

MPI_FILE_READ_AT 223

MPI_FILE_READ_AT_ALL 226

MPI_FILE_READ_AT_ALL_BEGIN 229

MPI_FILE_READ_AT_ALL_END 231

MPI_FILE_READ_ORDERED 233

MPI_FILE_READ_ORDERED_BEGIN 235

MPI_FILE_READ_ORDERED_END 237

MPI_FILE_READ_SHARED 239

MPI_FILE_SEEK 241

MPI_FILE_SEEK_SHARED 243

MPI_FILE_SET_ATOMICITY 245

MPI_FILE_SET_INFO 249

MPI_FILE_SET_SIZE 251

MPI_FILE_SET_VIEW 253

MPI_FILE_SYNC 256

MPI_FILE_WRITE 257

MPI_FILE_WRITE_ALL 259

MPI_FILE_WRITE_ALL_BEGIN 262

MPI_FILE_WRITE_ALL_END 264

MPI_FILE_WRITE_AT 266

MPI_FILE_WRITE_AT_ALL 269

MPI_FILE_WRITE_AT_ALL_BEGIN 272

MPI_FILE_WRITE_AT_ALL_END 274

MPI_FILE_WRITE_ORDERED 276

MPI_FILE_WRITE_ORDERED_BEGIN 278

MPI_FILE_WRITE_ORDERED_END 280

MPI_FILE_WRITE_SHARED 282

MPI_FREE_MEM 287

MPI_REGISTER_DATAREP 412

MPI_TYPE_CREATE_KEYVAL 483

MPI_TYPE_DELETE_ATTR 491

MPI_TYPE_DUP 492

MPI_TYPE_FREE_KEYVAL 498

MPI_TYPE_GET_ATTR 499

MPI_TYPE_SET_ATTR 522

N
nonblocking collective communication subroutines 5,

47

MPE_IALLGATHER 6

MPE_IALLGATHERV 9

MPE_IALLREDUCE 12

MPE_IALLTOALL 15

MPE_IALLTOALLV 18

MPE_IBARRIER 21

MPE_IBCAST 23

MPE_IGATHER 26

MPE_IGATHERV 29

MPE_IREDUCE 32

MPE_IREDUCE_SCATTER 35

MPE_ISCAN 38

MPE_ISCATTER 41

MPE_ISCATTERV 44

Index 611

P
parallel task identification API

subroutines 593

parallel utility subroutines 591

point-to-point subroutines
MPI_BSEND 84

MPI_BSEND_INIT 86

MPI_BUFFER_ATTACH 88

MPI_BUFFER_DETACH 90

MPI_CANCEL 92

MPI_GET_COUNT 299

MPI_IBSEND 340

MPI_IPROBE 367

MPI_IRECV 369

MPI_IRSEND 371

MPI_ISEND 374

MPI_ISSEND 376

MPI_PROBE 395

MPI_RECV 402

MPI_RECV_INIT 404

MPI_REQUEST_FREE 417

MPI_RSEND 420

MPI_RSEND_INIT 422

MPI_SEND 432

MPI_SEND_INIT 434

MPI_SENDRECV 436

MPI_SENDRECV_REPLACE 438

MPI_SSEND 441

MPI_SSEND_INIT 443

MPI_START 445

MPI_STARTALL 447

MPI_TEST 452

MPI_TEST_CANCELLED 454

MPI_TESTALL 455

MPI_TESTANY 457

MPI_TESTSOME 460

MPI_WAIT 537

MPI_WAITALL 539

MPI_WAITANY 541

MPI_WAITSOME 544

S
sample function 1

sample subroutine 1

shared memory 5, 47

shortcut keys
keyboard 595

signal library 5, 6, 9, 12, 15, 19, 21, 23, 26, 30, 32, 35,

38, 41, 45

subroutine sample 1

subroutines
collective communication

MPI_ALLGATHER 59

MPI_ALLGATHERV 61

MPI_ALLREDUCE 65

MPI_ALLTOALL 68

MPI_ALLTOALLV 70

MPI_ALLTOALLW 72

MPI_BARRIER 80

subroutines (continued)
collective communication (continued)

MPI_BCAST 82

MPI_EXSCAN 160

MPI_GATHER 288

MPI_GATHERV 291

MPI_OP_CREATE 382

MPI_OP_FREE 385

MPI_REDUCE 406

MPI_REDUCE_SCATTER 409

MPI_SCAN 424

MPI_SCATTER 426

MPI_SCATTERV 429

communicator
MPI_ATTR_DELETE 75

MPI_ATTR_GET 76

MPI_ATTR_PUT 78

MPI_COMM_COMPARE 113

MPI_COMM_CREATE 115

MPI_COMM_CREATE_ERRHANDLER 117

MPI_COMM_CREATE_KEYVAL 119

MPI_COMM_DELETE_ATTR 121

MPI_COMM_DUP 122

MPI_COMM_FREE 125

MPI_COMM_FREE_KEYVAL 126

MPI_COMM_GET_ATTR 127

MPI_COMM_GET_ERRHANDLER 129

MPI_COMM_RANK 133

MPI_COMM_REMOTE_GROUP 134

MPI_COMM_REMOTE_SIZE 135

MPI_COMM_SET_ATTR 136

MPI_COMM_SET_ERRHANDLER 138

MPI_COMM_SIZE 141

MPI_COMM_SPLIT 143

MPI_COMM_TEST_INTER 145

MPI_INTERCOMM_CREATE 363

MPI_INTERCOMM_MERGE 365

MPI_KEYVAL_CREATE 378

MPI_KEYVAL_FREE 380

MPI::Comm::Clone 112

derived data type
MPI_ADDRESS 58

MPI_GET_ADDRESS 297

MPI_GET_ELEMENTS 301

MPI_PACK 386

MPI_PACK_EXTERNAL 388

MPI_PACK_EXTERNAL_SIZE 390

MPI_PACK_SIZE 392

MPI_SIZEOF 440

MPI_TYPE_COMMIT 465

MPI_TYPE_CONTIGUOUS 467

MPI_TYPE_CREATE_F90_COMPLEX 472

MPI_TYPE_CREATE_F90_INTEGER 474

MPI_TYPE_CREATE_F90_REAL 475

MPI_TYPE_CREATE_HINDEXED 477

MPI_TYPE_CREATE_HVECTOR 479

MPI_TYPE_CREATE_INDEXED_BLOCK 481

MPI_TYPE_CREATE_RESIZED 485

MPI_TYPE_CREATE_STRUCT 487

MPI_TYPE_EXTENT 494

MPI_TYPE_FREE 496

612 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

subroutines (continued)
derived data type (continued)

MPI_TYPE_GET_CONTENTS 501

MPI_TYPE_GET_ENVELOPE 505

MPI_TYPE_GET_EXTENT 507

MPI_TYPE_GET_TRUE_EXTENT 511

MPI_TYPE_HINDEXED 513

MPI_TYPE_HVECTOR 515

MPI_TYPE_INDEXED 517

MPI_TYPE_LB 519

MPI_TYPE_MATCH_SIZE 520

MPI_TYPE_SIZE 526

MPI_TYPE_STRUCT 527

MPI_TYPE_UB 529

MPI_TYPE_VECTOR 531

MPI_UNPACK 533

MPI_UNPACK_EXTERNAL 535

environment management
MPI_ABORT 48

MPI_ERRHANDLER_CREATE 149

MPI_ERRHANDLER_FREE 152

MPI_ERRHANDLER_GET 153

MPI_ERRHANDLER_SET 154

MPI_ERROR_CLASS 156

MPI_ERROR_STRING 159

MPI_FILE_CREATE_ERRHANDLER 168

MPI_FILE_GET_ERRHANDLER 176

MPI_FILE_SET_ERRHANDLER 247

MPI_FINALIZE 284

MPI_FINALIZED 286

MPI_GET_PROCESSOR_NAME 303

MPI_GET_VERSION 304

MPI_INIT 358

MPI_INIT_THREAD 360

MPI_INITIALIZED 362

MPI_IS_THREAD_MAIN 373

MPI_PCONTROL 394

MPI_QUERY_THREAD 400

MPI_WTICK 589

MPI_WTIME 590

external interface
MPI_ADD_ERROR_CLASS 52

MPI_ADD_ERROR_CODE 54

MPI_ADD_ERROR_STRING 56

MPI_COMM_CALL_ERRHANDLER 110

MPI_COMM_GET_NAME 130

MPI_COMM_SET_NAME 139

MPI_FILE_CALL_ERRHANDLER 164

MPI_GREQUEST_COMPLETE 316

MPI_GREQUEST_START 317

MPI_STATUS_SET_CANCELLED 450

MPI_STATUS_SET_ELEMENTS 451

MPI_TYPE_GET_NAME 509

MPI_TYPE_SET_NAME 524

MPI_WIN_CALL_ERRHANDLER 548

MPI_WIN_GET_NAME 570

MPI_WIN_SET_NAME 580

group management
MPI_COMM_GROUP 132

MPI_GROUP_COMPARE 322

MPI_GROUP_DIFFERENCE 323

subroutines (continued)
group management (continued)

MPI_GROUP_EXCL 324

MPI_GROUP_FREE 327

MPI_GROUP_INCL 328

MPI_GROUP_INTERSECTION 330

MPI_GROUP_RANGE_EXCL 331

MPI_GROUP_RANGE_INCL 333

MPI_GROUP_RANK 335

MPI_GROUP_SIZE 336

MPI_GROUP_TRANSLATE_RANKS 337

MPI_GROUP_UNION 339

Info object
MPI_INFO_CREATE 343

MPI_INFO_DELETE 344

MPI_INFO_DUP 346

MPI_INFO_FREE 348

MPI_INFO_GET 349

MPI_INFO_GET_NKEYS 351

MPI_INFO_GET_NTHKEY 352

MPI_INFO_GET_VALUELEN 354

MPI_INFO_SET 356

message passing interface 47

MPI 47

MPI data type
MPI_TYPE_CREATE_DARRAY 469

MPI_TYPE_CREATE_SUBARRAY 489

MPI one-sided
MPI_ACCUMULATE 49

MPI_GET 294

MPI_PUT 397

MPI_WIN_COMPLETE 550

MPI_WIN_CREATE 552

MPI_WIN_CREATE_ERRHANDLER 555

MPI_WIN_CREATE_KEYVAL 557

MPI_WIN_DELETE_ATTR 559

MPI_WIN_FENCE 561

MPI_WIN_FREE 564

MPI_WIN_FREE_KEYVAL 565

MPI_WIN_GET_ATTR 566

MPI_WIN_GET_ERRHANDLER 568

MPI_WIN_GET_GROUP 569

MPI_WIN_LOCK 572

MPI_WIN_POST 574

MPI_WIN_SET_ATTR 577

MPI_WIN_SET_ERRHANDLER 579

MPI_WIN_START 582

MPI_WIN_TEST 584

MPI_WIN_UNLOCK 586

MPI_WIN_WAIT 587

MPI_STATUS object
MPI_REQUEST_GET_STATUS 418

MPI-IO
MPI_ALLOC_MEM 63

MPI_FILE GET_GROUP 178

MPI_FILE_CLOSE 166

MPI_FILE_DELETE 170

MPI_FILE_GET_AMODE 173

MPI_FILE_GET_ATOMICITY 174

MPI_FILE_GET_BYTE_OFFSET 175

MPI_FILE_GET_INFO 179

Index 613

subroutines (continued)
MPI-IO (continued)

MPI_FILE_GET_POSITION 181

MPI_FILE_GET_POSITION_SHARED 182

MPI_FILE_GET_SIZE 183

MPI_FILE_GET_TYPE_EXTENT 185

MPI_FILE_GET_VIEW 187

MPI_FILE_IREAD 189

MPI_FILE_IREAD_AT 192

MPI_FILE_IREAD_SHARED 195

MPI_FILE_IWRITE 198

MPI_FILE_IWRITE_AT 201

MPI_FILE_IWRITE_SHARED 204

MPI_FILE_OPEN 207

MPI_FILE_PREALLOCATE 213

MPI_FILE_READ 215

MPI_FILE_READ_ALL 217

MPI_FILE_READ_ALL_BEGIN 219

MPI_FILE_READ_ALL_END 221

MPI_FILE_READ_AT 223

MPI_FILE_READ_AT_ALL 226

MPI_FILE_READ_AT_ALL_BEGIN 229

MPI_FILE_READ_AT_ALL_END 231

MPI_FILE_READ_ORDERED 233

MPI_FILE_READ_ORDERED_BEGIN 235

MPI_FILE_READ_ORDERED_END 237

MPI_FILE_READ_SHARED 239

MPI_FILE_SEEK 241

MPI_FILE_SEEK_SHARED 243

MPI_FILE_SET_ATOMICITY 245

MPI_FILE_SET_INFO 249

MPI_FILE_SET_SIZE 251

MPI_FILE_SET_VIEW 253

MPI_FILE_SYNC 256

MPI_FILE_WRITE 257

MPI_FILE_WRITE_ALL 259

MPI_FILE_WRITE_ALL_BEGIN 262

MPI_FILE_WRITE_ALL_END 264

MPI_FILE_WRITE_AT 266

MPI_FILE_WRITE_AT_ALL 269

MPI_FILE_WRITE_AT_ALL_BEGIN 272

MPI_FILE_WRITE_AT_ALL_END 274

MPI_FILE_WRITE_ORDERED 276

MPI_FILE_WRITE_ORDERED_BEGIN 278

MPI_FILE_WRITE_ORDERED_END 280

MPI_FILE_WRITE_SHARED 282

MPI_FREE_MEM 287

MPI_REGISTER_DATAREP 412

MPI_TYPE_CREATE_KEYVAL 483

MPI_TYPE_DELETE_ATTR 491

MPI_TYPE_DUP 492

MPI_TYPE_FREE_KEYVAL 498

MPI_TYPE_GET_ATTR 499

MPI_TYPE_SET_ATTR 522

nonblocking collective communication 5

MPE_IALLGATHER 6

MPE_IALLGATHERV 9

MPE_IALLREDUCE 12

MPE_IALLTOALL 15

MPE_IALLTOALLV 18

MPE_IBARRIER 21

subroutines (continued)
nonblocking collective communication (continued)

MPE_IBCAST 23

MPE_IGATHER 26

MPE_IGATHERV 29

MPE_IREDUCE 32

MPE_IREDUCE_SCATTER 35

MPE_ISCAN 38

MPE_ISCATTER 41

MPE_ISCATTERV 44

parallel task identification API 593

parallel utility subroutines 591

point-to-point
MPI_BSEND 84

MPI_BSEND_INIT 86

MPI_BUFFER_ATTACH 88

MPI_BUFFER_DETACH 90

MPI_CANCEL 92

MPI_GET_COUNT 299

MPI_IBSEND 340

MPI_IPROBE 367

MPI_IRECV 369

MPI_IRSEND 371

MPI_ISEND 374

MPI_ISSEND 376

MPI_PROBE 395

MPI_RECV 402

MPI_RECV_INIT 404

MPI_REQUEST_FREE 417

MPI_RSEND 420

MPI_RSEND_INIT 422

MPI_SEND 432

MPI_SEND_INIT 434

MPI_SENDRECV 436

MPI_SENDRECV_REPLACE 438

MPI_SSEND 441

MPI_SSEND_INIT 443

MPI_START 445

MPI_STARTALL 447

MPI_TEST 452

MPI_TEST_CANCELLED 454

MPI_TESTALL 455

MPI_TESTANY 457

MPI_TESTSOME 460

MPI_WAIT 537

MPI_WAITALL 539

MPI_WAITANY 541

MPI_WAITSOME 544

topology
MPI_CART_COORDS 94

MPI_CART_CREATE 96

MPI_CART_GET 98

MPI_CART_MAP 100

MPI_CART_RANK 102

MPI_CART_SHIFT 104

MPI_CART_SUB 106

MPI_CARTDIM_GET 108

MPI_DIMS_CREATE 146

MPI_GRAPH_CREATE 305

MPI_GRAPH_GET 308

MPI_GRAPH_MAP 310

614 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

subroutines (continued)
topology (continued)

MPI_GRAPH_NEIGHBORS 312

MPI_GRAPH_NEIGHBORS_COUNT 314

MPI_GRAPHDIMS_GET 315

MPI_TOPO_TEST 463

T
threads library 5, 6, 9, 12, 15, 19, 21, 23, 26, 30, 32,

35, 38, 41, 45

topology subroutines
MPI_CART_COORDS 94

MPI_CART_CREATE 96

MPI_CART_GET 98

MPI_CART_MAP 100

MPI_CART_RANK 102

MPI_CART_SHIFT 104

MPI_CART_SUB 106

MPI_CARTDIM_GET 108

MPI_DIMS_CREATE 146

MPI_GRAPH_CREATE 305

MPI_GRAPH_GET 308

MPI_GRAPH_MAP 310

MPI_GRAPH_NEIGHBORS 312

MPI_GRAPH_NEIGHBORS_COUNT 314

MPI_GRAPHDIMS_GET 315

MPI_TOPO_TEST 463

trademarks 599

W
who should read this book xiii

Index 615

616 IBM PE for AIX 5L V4 R3.0: MPI Subroutine Reference

Readers’ comments – We’d like to hear from you

IBM Parallel Environment for AIX 5L

MPI Subroutine Reference

Version 4 Release 3.0

 Publication No. SA22-7946-05

 We appreciate your comments about this publication. Please comment on specific errors or omissions, accuracy,

organization, subject matter, or completeness of this book. The comments you send should pertain to only the

information in this manual or product and the way in which the information is presented.

For technical questions and information about products and prices, please contact your IBM branch office, your IBM

business partner, or your authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you. IBM or any other organizations will only use the

personal information that you supply to contact you about the issues that you state on this form.

Comments:

 Thank you for your support.

Submit your comments using one of these channels:

v Send your comments to the address on the reverse side of this form.

v Send your comments via e-mail to: mhvrcfs@us.ibm.com

If you would like a response from IBM, please fill in the following information:

Name

Address

Company or Organization

Phone No. E-mail address

Readers’ Comments — We’d Like to Hear from You
 SA22-7946-05

SA22-7946-05

����

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
 FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

 POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Department 55JA, Mail Station P384

2455 South Road

Poughkeepsie, NY

 12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5765-F83

SA22-7946-05

	Contents
	Tables
	About this book
	Who should read this book
	Conventions and terminology used in this book
	Abbreviated names

	Prerequisite and related information
	Using LookAt to look up message explanations

	How to send your comments
	National language support (NLS)
	Summary of changes for Parallel Environment 4.3

	Chapter 1. A sample MPI subroutine
	A_SAMPLE_MPI_SUBROUTINE, A_Sample_MPI_subroutine

	Chapter 2. Nonblocking collective communication subroutines
	MPE_IALLGATHER, MPE_Iallgather
	MPE_IALLGATHERV, MPE_Iallgatherv
	MPE_IALLREDUCE, MPE_Iallreduce
	MPE_IALLTOALL, MPE_Ialltoall
	MPE_IALLTOALLV, MPE_Ialltoallv
	MPE_IBARRIER, MPE_Ibarrier
	MPE_IBCAST, MPE_Ibcast
	MPE_IGATHER, MPE_Igather
	MPE_IGATHERV, MPE_Igatherv
	MPE_IREDUCE, MPE_Ireduce
	MPE_IREDUCE_SCATTER, MPE_Ireduce_scatter
	MPE_ISCAN, MPE_Iscan
	MPE_ISCATTER, MPE_Iscatter
	MPE_ISCATTERV, MPE_Iscatterv

	Chapter 3. MPI subroutines and functions
	MPI_ABORT, MPI_Abort
	MPI_ACCUMULATE, MPI_Accumulate
	MPI_ADD_ERROR_CLASS, MPI_Add_error_class
	MPI_ADD_ERROR_CODE, MPI_Add_error_code
	MPI_ADD_ERROR_STRING, MPI_Add_error_string
	MPI_ADDRESS, MPI_Address
	MPI_ALLGATHER, MPI_Allgather
	MPI_ALLGATHERV, MPI_Allgatherv
	MPI_ALLOC_MEM, MPI_Alloc_mem
	MPI_ALLREDUCE, MPI_Allreduce
	MPI_ALLTOALL, MPI_Alltoall
	MPI_ALLTOALLV, MPI_Alltoallv
	MPI_ALLTOALLW, MPI_Alltoallw
	MPI_ATTR_DELETE, MPI_Attr_delete
	MPI_ATTR_GET, MPI_Attr_get
	MPI_ATTR_PUT, MPI_Attr_put
	MPI_BARRIER, MPI_Barrier
	MPI_BCAST, MPI_Bcast
	MPI_BSEND, MPI_Bsend
	MPI_BSEND_INIT, MPI_Bsend_init
	MPI_BUFFER_ATTACH, MPI_Buffer_attach
	MPI_BUFFER_DETACH, MPI_Buffer_detach
	MPI_CANCEL, MPI_Cancel
	MPI_CART_COORDS, MPI_Cart_coords
	MPI_CART_CREATE, MPI_Cart_create
	MPI_CART_GET, MPI_Cart_get
	MPI_CART_MAP, MPI_Cart_map
	MPI_CART_RANK, MPI_Cart_rank
	MPI_CART_SHIFT, MPI_Cart_shift
	MPI_CART_SUB, MPI_Cart_sub
	MPI_CARTDIM_GET, MPI_Cartdim_get
	MPI_Comm_c2f
	MPI_COMM_CALL_ERRHANDLER, MPI_Comm_call_errhandler
	MPI::Comm::Clone
	MPI_COMM_COMPARE, MPI_Comm_compare
	MPI_COMM_CREATE, MPI_Comm_create
	MPI_COMM_CREATE_ERRHANDLER, MPI_Comm_create_errhandler
	MPI_COMM_CREATE_KEYVAL, MPI_Comm_create_keyval
	MPI_COMM_DELETE_ATTR, MPI_Comm_delete_attr
	MPI_COMM_DUP, MPI_Comm_dup
	MPI_Comm_f2c
	MPI_COMM_FREE, MPI_Comm_free
	MPI_COMM_FREE_KEYVAL, MPI_Comm_free_keyval
	MPI_COMM_GET_ATTR, MPI_Comm_get_attr
	MPI_COMM_GET_ERRHANDLER, MPI_Comm_get_errhandler
	MPI_COMM_GET_NAME, MPI_Comm_get_name
	MPI_COMM_GROUP, MPI_Comm_group
	MPI_COMM_RANK, MPI_Comm_rank
	MPI_COMM_REMOTE_GROUP, MPI_Comm_remote_group
	MPI_COMM_REMOTE_SIZE, MPI_Comm_remote_size
	MPI_COMM_SET_ATTR, MPI_Comm_set_attr
	MPI_COMM_SET_ERRHANDLER, MPI_Comm_set_errhandler
	MPI_COMM_SET_NAME, MPI_Comm_set_name
	MPI_COMM_SIZE, MPI_Comm_size
	MPI_COMM_SPLIT, MPI_Comm_split
	MPI_COMM_TEST_INTER, MPI_Comm_test_inter
	MPI_DIMS_CREATE, MPI_Dims_create
	MPI_Errhandler_c2f
	MPI_ERRHANDLER_CREATE, MPI_Errhandler_create
	MPI_Errhandler_f2c
	MPI_ERRHANDLER_FREE, MPI_Errhandler_free
	MPI_ERRHANDLER_GET, MPI_Errhandler_get
	MPI_ERRHANDLER_SET, MPI_Errhandler_set
	MPI_ERROR_CLASS, MPI_Error_class
	MPI_ERROR_STRING, MPI_Error_string
	MPI_EXSCAN, MPI_Exscan
	MPI_File_c2f
	MPI_FILE_CALL_ERRHANDLER, MPI_File_call_errhandler
	MPI_FILE_CLOSE, MPI_File_close
	MPI_FILE_CREATE_ERRHANDLER, MPI_File_create_errhandler
	MPI_FILE_DELETE, MPI_File_delete
	MPI_File_f2c
	MPI_FILE_GET_AMODE, MPI_File_get_amode
	MPI_FILE_GET_ATOMICITY, MPI_File_get_atomicity
	MPI_FILE_GET_BYTE_OFFSET, MPI_File_get_byte_offset
	MPI_FILE_GET_ERRHANDLER, MPI_File_get_errhandler
	MPI_FILE_GET_GROUP, MPI_File_get_group
	MPI_FILE_GET_INFO, MPI_File_get_info
	MPI_FILE_GET_POSITION, MPI_File_get_position
	MPI_FILE_GET_POSITION_SHARED, MPI_File_get_position_shared
	MPI_FILE_GET_SIZE, MPI_File_get_size
	MPI_FILE_GET_TYPE_EXTENT, MPI_File_get_type_extent
	MPI_FILE_GET_VIEW, MPI_File_get_view
	MPI_FILE_IREAD, MPI_File_iread
	MPI_FILE_IREAD_AT, MPI_File_iread_at
	MPI_FILE_IREAD_SHARED, MPI_File_iread_shared
	MPI_FILE_IWRITE, MPI_File_iwrite
	MPI_FILE_IWRITE_AT, MPI_File_iwrite_at
	MPI_FILE_IWRITE_SHARED, MPI_File_iwrite_shared
	MPI_FILE_OPEN, MPI_File_open
	MPI_FILE_PREALLOCATE, MPI_File_preallocate
	MPI_FILE_READ, MPI_File_read
	MPI_FILE_READ_ALL, MPI_File_read_all
	MPI_FILE_READ_ALL_BEGIN, MPI_File_read_all_begin
	MPI_FILE_READ_ALL_END, MPI_File_read_all_end
	MPI_FILE_READ_AT, MPI_File_read_at
	MPI_FILE_READ_AT_ALL, MPI_File_read_at_all
	MPI_FILE_READ_AT_ALL_BEGIN, MPI_File_read_at_all_begin
	MPI_FILE_READ_AT_ALL_END, MPI_File_read_at_all_end
	MPI_FILE_READ_ORDERED, MPI_File_read_ordered
	MPI_FILE_READ_ORDERED_BEGIN, MPI_File_read_ordered_begin
	MPI_FILE_READ_ORDERED_END, MPI_File_read_ordered_end
	MPI_FILE_READ_SHARED, MPI_File_read_shared
	MPI_FILE_SEEK, MPI_File_seek
	MPI_FILE_SEEK_SHARED, MPI_File_seek_shared
	MPI_FILE_SET_ATOMICITY, MPI_File_set_atomicity
	MPI_FILE_SET_ERRHANDLER, MPI_File_set_errhandler
	MPI_FILE_SET_INFO, MPI_File_set_info
	MPI_FILE_SET_SIZE, MPI_File_set_size
	MPI_FILE_SET_VIEW, MPI_File_set_view
	MPI_FILE_SYNC, MPI_File_sync
	MPI_FILE_WRITE, MPI_File_write
	MPI_FILE_WRITE_ALL, MPI_File_write_all
	MPI_FILE_WRITE_ALL_BEGIN, MPI_File_write_all_begin
	MPI_FILE_WRITE_ALL_END, MPI_File_write_all_end
	MPI_FILE_WRITE_AT, MPI_File_write_at
	MPI_FILE_WRITE_AT_ALL, MPI_File_write_at_all
	MPI_FILE_WRITE_AT_ALL_BEGIN, MPI_File_write_at_all_begin
	MPI_FILE_WRITE_AT_ALL_END, MPI_File_write_at_all_end
	MPI_FILE_WRITE_ORDERED, MPI_File_write_ordered
	MPI_FILE_WRITE_ORDERED_BEGIN, MPI_File_write_ordered_begin
	MPI_FILE_WRITE_ORDERED_END, MPI_File_write_ordered_end
	MPI_FILE_WRITE_SHARED, MPI_File_write_shared
	MPI_FINALIZE, MPI_Finalize
	MPI_FINALIZED, MPI_Finalized
	MPI_FREE_MEM, MPI_Free_mem
	MPI_GATHER, MPI_Gather
	MPI_GATHERV, MPI_Gatherv
	MPI_GET, MPI_Get
	MPI_GET_ADDRESS, MPI_Get_address
	MPI_GET_COUNT, MPI_Get_count
	MPI_GET_ELEMENTS, MPI_Get_elements
	MPI_GET_PROCESSOR_NAME, MPI_Get_processor_name
	MPI_GET_VERSION, MPI_Get_version
	MPI_GRAPH_CREATE, MPI_Graph_create
	MPI_GRAPH_GET, MPI_Graph_get
	MPI_GRAPH_MAP, MPI_Graph_map
	MPI_GRAPH_NEIGHBORS, MPI_Graph_neighbors
	MPI_GRAPH_NEIGHBORS_COUNT, MPI_Graph_neighbors_count
	MPI_GRAPHDIMS_GET, MPI_Graphdims_get
	MPI_GREQUEST_COMPLETE, MPI_Grequest_complete
	MPI_GREQUEST_START, MPI_Grequest_start
	MPI_Group_c2f
	MPI_GROUP_COMPARE, MPI_Group_compare
	MPI_GROUP_DIFFERENCE, MPI_Group_difference
	MPI_GROUP_EXCL, MPI_Group_excl
	MPI_Group_f2c
	MPI_GROUP_FREE, MPI_Group_free
	MPI_GROUP_INCL, MPI_Group_incl
	MPI_GROUP_INTERSECTION, MPI_Group_intersection
	MPI_GROUP_RANGE_EXCL, MPI_Group_range_excl
	MPI_GROUP_RANGE_INCL, MPI_Group_range_incl
	MPI_GROUP_RANK, MPI_Group_rank
	MPI_GROUP_SIZE, MPI_Group_size
	MPI_GROUP_TRANSLATE_RANKS, MPI_Group_translate_ranks
	MPI_GROUP_UNION, MPI_Group_union
	MPI_IBSEND, MPI_Ibsend
	MPI_Info_c2f
	MPI_INFO_CREATE, MPI_Info_create
	MPI_INFO_DELETE, MPI_Info_delete
	MPI_INFO_DUP, MPI_Info_dup
	MPI_Info_f2c
	MPI_INFO_FREE, MPI_Info_free
	MPI_INFO_GET, MPI_Info_get
	MPI_INFO_GET_NKEYS, MPI_Info_get_nkeys
	MPI_INFO_GET_NTHKEY, MPI_Info_get_nthkey
	MPI_INFO_GET_VALUELEN, MPI_Info_get_valuelen
	MPI_INFO_SET, MPI_Info_set
	MPI_INIT, MPI_Init
	MPI_INIT_THREAD, MPI_Init_thread
	MPI_INITIALIZED, MPI_Initialized
	MPI_INTERCOMM_CREATE, MPI_Intercomm_create
	MPI_INTERCOMM_MERGE, MPI_Intercomm_merge
	MPI_IPROBE, MPI_Iprobe
	MPI_IRECV, MPI_Irecv
	MPI_IRSEND, MPI_Irsend
	MPI_IS_THREAD_MAIN, MPI_Is_thread_main
	MPI_ISEND, MPI_Isend
	MPI_ISSEND, MPI_Issend
	MPI_KEYVAL_CREATE, MPI_Keyval_create
	MPI_KEYVAL_FREE, MPI_Keyval_free
	MPI_Op_c2f
	MPI_OP_CREATE, MPI_Op_create
	MPI_Op_f2c
	MPI_OP_FREE, MPI_Op_free
	MPI_PACK, MPI_Pack
	MPI_PACK_EXTERNAL, MPI_Pack_external
	MPI_PACK_EXTERNAL_SIZE, MPI_Pack_external_size
	MPI_PACK_SIZE, MPI_Pack_size
	MPI_PCONTROL, MPI_Pcontrol
	MPI_PROBE, MPI_Probe
	MPI_PUT, MPI_Put
	MPI_QUERY_THREAD, MPI_Query_thread
	MPI_RECV, MPI_Recv
	MPI_RECV_INIT, MPI_Recv_init
	MPI_REDUCE, MPI_Reduce
	MPI_REDUCE_SCATTER, MPI_Reduce_scatter
	MPI_REGISTER_DATAREP, MPI_Register_datarep
	MPI_Request_c2f
	MPI_Request_f2c
	MPI_REQUEST_FREE, MPI_Request_free
	MPI_REQUEST_GET_STATUS, MPI_Request_get_status
	MPI_RSEND, MPI_Rsend
	MPI_RSEND_INIT, MPI_Rsend_init
	MPI_SCAN, MPI_Scan
	MPI_SCATTER, MPI_Scatter
	MPI_SCATTERV, MPI_Scatterv
	MPI_SEND, MPI_Send
	MPI_SEND_INIT, MPI_Send_init
	MPI_SENDRECV, MPI_Sendrecv
	MPI_SENDRECV_REPLACE, MPI_Sendrecv_replace
	MPI_SIZEOF
	MPI_SSEND, MPI_Ssend
	MPI_SSEND_INIT, MPI_Ssend_init
	MPI_START, MPI_Start
	MPI_STARTALL, MPI_Startall
	MPI_Status_c2f
	MPI_Status_f2c
	MPI_STATUS_SET_CANCELLED, MPI_Status_set_cancelled
	MPI_STATUS_SET_ELEMENTS, MPI_Status_set_elements
	MPI_TEST, MPI_Test
	MPI_TEST_CANCELLED, MPI_Test_cancelled
	MPI_TESTALL, MPI_Testall
	MPI_TESTANY, MPI_Testany
	MPI_TESTSOME, MPI_Testsome
	MPI_TOPO_TEST, MPI_Topo_test
	MPI_Type_c2f
	MPI_TYPE_COMMIT, MPI_Type_commit
	MPI_TYPE_CONTIGUOUS, MPI_Type_contiguous
	MPI_TYPE_CREATE_DARRAY, MPI_Type_create_darray
	MPI_TYPE_CREATE_F90_COMPLEX, MPI_Type_create_f90_complex
	MPI_TYPE_CREATE_F90_INTEGER, MPI_Type_create_f90_integer
	MPI_TYPE_CREATE_F90_REAL, MPI_Type_create_f90_real
	MPI_TYPE_CREATE_HINDEXED, MPI_Type_create_hindexed
	MPI_TYPE_CREATE_HVECTOR, MPI_Type_create_hvector
	MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_Type_create_indexed_block
	MPI_TYPE_CREATE_KEYVAL, MPI_Type_create_keyval
	MPI_TYPE_CREATE_RESIZED, MPI_Type_create_resized
	MPI_TYPE_CREATE_STRUCT, MPI_Type_create_struct
	MPI_TYPE_CREATE_SUBARRAY, MPI_Type_create_subarray
	MPI_TYPE_DELETE_ATTR, MPI_Type_delete_attr
	MPI_TYPE_DUP, MPI_Type_dup
	MPI_TYPE_EXTENT, MPI_Type_extent
	MPI_Type_f2c
	MPI_TYPE_FREE, MPI_Type_free
	MPI_TYPE_FREE_KEYVAL, MPI_Type_free_keyval
	MPI_TYPE_GET_ATTR, MPI_Type_get_attr
	MPI_TYPE_GET_CONTENTS, MPI_Type_get_contents
	MPI_TYPE_GET_ENVELOPE, MPI_Type_get_envelope
	MPI_TYPE_GET_EXTENT, MPI_Type_get_extent
	MPI_TYPE_GET_NAME, MPI_Type_get_name
	MPI_TYPE_GET_TRUE_EXTENT, MPI_Type_get_true_extent
	MPI_TYPE_HINDEXED, MPI_Type_hindexed
	MPI_TYPE_HVECTOR, MPI_Type_hvector
	MPI_TYPE_INDEXED, MPI_Type_indexed
	MPI_TYPE_LB, MPI_Type_lb
	MPI_TYPE_MATCH_SIZE, MPI_Type_match_size
	MPI_TYPE_SET_ATTR, MPI_Type_set_attr
	MPI_TYPE_SET_NAME, MPI_Type_set_name
	MPI_TYPE_SIZE, MPI_Type_size
	MPI_TYPE_STRUCT, MPI_Type_struct
	MPI_TYPE_UB, MPI_Type_ub
	MPI_TYPE_VECTOR, MPI_Type_vector
	MPI_UNPACK, MPI_Unpack
	MPI_UNPACK_EXTERNAL, MPI_Unpack_external
	MPI_WAIT, MPI_Wait
	MPI_WAITALL, MPI_Waitall
	MPI_WAITANY, MPI_Waitany
	MPI_WAITSOME, MPI_Waitsome
	MPI_Win_c2f
	MPI_WIN_CALL_ERRHANDLER, MPI_Win_call_errhandler
	MPI_WIN_COMPLETE, MPI_Win_complete
	MPI_WIN_CREATE, MPI_Win_create
	MPI_WIN_CREATE_ERRHANDLER, MPI_Win_create_errhandler
	MPI_WIN_CREATE_KEYVAL, MPI_Win_create_keyval
	MPI_WIN_DELETE_ATTR, MPI_Win_delete_attr
	MPI_Win_f2c
	MPI_WIN_FENCE, MPI_Win_fence
	MPI_WIN_FREE, MPI_Win_free
	MPI_WIN_FREE_KEYVAL, MPI_Win_free_keyval
	MPI_WIN_GET_ATTR, MPI_Win_get_attr
	MPI_WIN_GET_ERRHANDLER, MPI_Win_get_errhandler
	MPI_WIN_GET_GROUP, MPI_Win_get_group
	MPI_WIN_GET_NAME, MPI_Win_get_name
	MPI_WIN_LOCK, MPI_Win_lock
	MPI_WIN_POST, MPI_Win_post
	MPI_WIN_SET_ATTR, MPI_Win_set_attr
	MPI_WIN_SET_ERRHANDLER, MPI_Win_set_errhandler
	MPI_WIN_SET_NAME, MPI_Win_set_name
	MPI_WIN_START, MPI_Win_start
	MPI_WIN_TEST, MPI_Win_test
	MPI_WIN_UNLOCK, MPI_Win_unlock
	MPI_WIN_WAIT, MPI_Win_wait
	MPI_WTICK, MPI_Wtick
	MPI_WTIME, MPI_Wtime

	Appendix A. Parallel utility subroutines
	Appendix B. Parallel task identification API subroutines
	Appendix C. Accessibility features for PE
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks
	Acknowledgments

	Glossary
	Index
	Readers' comments – We'd like to hear from you

